① python/PHP MySQL语句解析器解决业务分表
自己曾经做过一个网盘项目。刚开始由于需要快速地从0到1建设上线,所以没有对核心文档表进行分表。当然我的架构理念也是“按需架构设计”。产品需求在没有明确的长远计划的情况下以“小步快跑,赶超竞品”为主。后期由于产品功能触达目标用户群需求点、产品用户体验不断提升、产品多方位导流、加强产品推广文档表每天有百万数据增长量。不得不对文档表进行按用户id分表。当时产品功能已全覆盖文档的生命周期。产品功能已丰富多彩。修改所有关联文档表的业务代码为按用户id分表开发测试成本非常高。上线后线上问题不可控。经过考虑在业务代码最底层DB层进行SQL语句解析来进行用户id分表处理。这样的话开发测试成本都非常低。上线后有问题方便回滚和追查原因。
今天为大家介绍Python/PHP两种MySQL语句解析器。当时网盘项目用的是PHP编程语言开发。
Python的SQL语句解析器 。个人推荐使用moz_sql_parser库。经调研官方的sqlparse库解析出来的语句段无法满足需求也很难理解。
1、Python moz_sql_parser库安装
2、Python moz_sql_parser SQL语句解析
3、Python moz_sql_parser总结
PHP的SQL语句解析器。 个人推荐使用PhpMyAdmin的sql-parser组件。PhpMyAdmin是经过 历史 检验可信赖的。
1、PHP PhpMyAdmin/sql-parser安装
2、PHP PhpMyAdmin/sql-parser SQL语句解析
3、PHP PhpMyAdmin/sql-parser总结
大家有什么问题可以发评论沟通。
② python ide是什么
python的ide是集成开发环境(IDE,Integrated Development Environment )是用于提供程序开发环境的应用程序,一般包括代码编
辑器、编译器、调试器和图形用户界面等工具。这篇文章收集了一些对开发者非常有帮助的,最好的几款Python IDE。
VimVim 可以说是 Python 最好的 IDE。Vim 是高级文本编辑器,旨在提供实际的 Unix 编辑器‘Vi’功能,支持更多更完善的特性集。
Vim 不需要花费太多的学习时间,一旦你需要一个无缝的编程体验,那么就会把 Vim 集成到你的工作流中。
Eclipse with PyDevEclipse 是非常流行的 IDE,而且已经有了很久的历史。Eclipse with Pydev 允许开发者创建有用和交互式的 Web
应用。PyDev 是 Eclipse 开发 Python 的 IDE,支持 Python,Jython和 IronPython 的开发。
python学习网,免费的python学习网站,欢迎在线学习!
Sublime TextSublime Text 是开发者中最流行的编辑器之一,多功能,支持多种语言,而且在开发者社区非常受欢迎。Sublime 有自
己的包管理器,开发者可以使用TA来安装组件,插件和额外的样式,所有这些都能提升你的编码体验。
Emacs
GNU Emacs 是可扩展,自定义的文本编辑器,甚至是更多的功能。Emacs 的核心是 Emacs Lisp 解析器,但是支持文本编辑。如果你已
经使用过 Vim,可以尝试一下 Emacs。
PyCharmPyCharm 是 JetBrains 开发的 Python IDE。PyCharm用于一般IDE具备的功能,比如, 调试、语法高亮、Project管理、代
码跳转、智能提示、自动完成、单元测试、版本控制……另外,PyCharm还提供了一些很好的功能用于Django开发,同时支持Google
App Engine,更酷的是,PyCharm支持IronPython!
③ python3.6与3.9有什么区别
python3.9相对于3.6更新了一些新的功能,比如字典更新和合并,基于PEG的高性能解析器,3.9提议用高性能和稳定的基于PEG的解析器替换当前基于LL(1)的Python解析器。
相关内容
Python的设计哲学是“优雅”、“明确”、“简单”。因此,Perl语言中“总是有多种方法来做同一件事”的理念在Python开发者中通常是难以忍受的。Python开发者的哲学是“用一种方法,最好是只有一种方法来做一件事”。
在设计Python语言时,如果面临多种选择,Python开发者一般会拒绝花俏的语法,而选择明确的没有或者很少有歧义的语法。由于这种设计观念的差异,Python源代码通常被认为比Perl具备更好的可读性,并且能够支撑大规模的软件开发。这些准则被称为Python格言。在Python解释器内运行import this可以获得完整的列表。
④ windows已安装好了Anaconda,python解析器也换成了Anaconda/python.exe,但是pycharm编写代码import找不到
你看你执行的第一行,是使用你当前工程的虚拟环境的python运行的,当然找不到模块。
你设置的解析器是pycharm的解析器(project interpreter),不是你工程运行的解析器(run configuration)。依次点击:Run->Edit Configurations,在这里设置你的工程主脚本和运行解析器。
⑤ Python怎样使用解释器
大学里计算机科学最吸引我的地方就是编译器。最神奇的是,编译器是如何读出我写的那些烂代码,并且还能生成那么复杂的程序。当我终于选了一门编译方面的课程时,我发现这个过程比我想的要简单得多。
在本系列的文章中,我会试着通过为一种基本命令语言IMP写一个解释器,来展示这种简易性。因为IMP是一个简单广为人知的语言,所以打算用 Python写这个解释器。Python代码看起来很像伪代码,所以即使你不认识 Python,你也能理解它。解析可以通过一套从头开始实现的解析器组合完成(在本系列的下一篇文章中会有解释)。除了sys(用于I/O)、re(用于解析正则表达式)以及unittest(用于确保一切工作正常)库,没有使用其他额外的库。
IMP 语言
在开始写之前,我们先来讨论一下将要解释的语言。IMP是拥有下面结构的最小命令语言:
赋值语句(所有变量都是全局的,而且只能存储整数):
Python
1
x := 1
条件语句:
Python
1
2
3
4
5
if x = 1 then
y := 2
else
y := 3
end
while循环:
Python
1
2
3
while x < 10 do
x := x + 1
end
复合语句(分号分隔):
Python
1
2
x := 1;
y := 2
OK,所以它只是一门工具语言,但你可以很容易就把它扩展成比Lua或python更有用的语言。我希望能把这份教程能保持尽量简单。
下面这个例子是计算阶乘的程序:
Python
1
2
3
4
5
6
n := 5;
p := 1;
while n > 0 do
p := p * n;
n := n - 1
end
IMP没有读取输入的方式,所以初始状态必须是在程序最开始写一系列的赋值语句。也没有打印结果的方式,所以解释器必须在程序的结尾打印所有变量的值。
解释器的结构
解释器的核心是“中间表示”(Intermediate representation,IR)。这就是如何在内存中表示IMP程序。因为IMP是一个很简单的语言,中间表示将直接对应于语言的语法;每一种表达和语句都有对应的类。在一种更复杂的语言中,你不仅需要一个“语法表示”,还需要一个更容易分析或运行的“语义表示”。
解释器将会执行三个阶段:
将源码中的字符分割成标记符(token)
将标记符组织成一棵抽象语法树(AST)。抽象语法树就是中间表示。
评估这棵抽象语法树,并在最后打印这棵树的状态
将字符串分割成标记符的过程叫做“词法分析”,通过一个词法分析器完成。关键字是很短,易于理解的字符串,包含程序中最基本的部分,如数字、标识符、关键字和操作符。词法分析器会除去空格和注释,因为它们都会被解释器忽略。
实际执行这个解析过的抽象语法树的过程称为评估。这实际上是这个解析器中最简单的部分了。
本文会把重点放在词法分析器上。我们将编写一个通用的词汇库,然后用它来为IMP创建一个词法分析器。下一篇文章将会重点打造一个语法分析器和评估计算器。
词汇库
词法分析器的操作相当简单。它是基于正则表达式的,所以如果你不熟悉它们,你可能需要读一些资料。简单来说,正则表达式就是一种能描述其他字符串的特殊的格式化的字符串。你可以使用它们去匹配电话号码或是邮箱地址,或者是像我们遇到在这种情况,不同类型的标记符。
词法分析器的输入可能只是一个字符串。简单起见,我们将整个输入文件都读到内存中。输出是一个标记符列表。每个标记符包括一个值(它代表的字符串)和一个标记(表示它是一个什么类型的标记符)。语法分析器会使用这两个数据来决定如何构建一棵抽象语法树。
由于不论何种语言的词法分析器,其操作都大同小异,我们将创建一个通用的词法分析器,包括一个正则表达式列表和对应的标签(tag)。对每一个表达式,它都会检查是否和当前位置的输入文本匹配。如果匹配,匹配文本就会作为一个标记符被提取出来,并且被加上该正则表达式的标签。如果该正则表达式没有标签,那么这段文本将会被丢弃。这样免得我们被诸如注释和空格之类的垃圾字符干扰。如果没有匹配的正则表达式,程序就要报错并终止。这个过程会不断循环直到没有字符可匹配。
下面是一段来自词汇库的代码:
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import sys
import re
def lex(characters, token_exprs):
pos = 0
tokens = []
while pos < len(characters):
match = None
for token_expr in token_exprs:
pattern, tag = token_expr
regex = re.compile(pattern)
match = regex.match(characters, pos)
if match:
text = match.group(0)
if tag:
token = (text, tag)
tokens.append(token)
break
if not match:
sys.stderr.write('Illegal character: %sn' % characters[pos])
sys.exit(1)
else:
pos = match.end(0)
return tokens
注意,我们遍历正则表达式的顺序很重要。lex会遍历所有的表达式,然后接受第一个匹配成功的表达式。这也就意味着,当使用词法分析器时,我们应当首先考虑最具体的表达式(像那些匹配算子(matching operator)和关键词),其次才是比较一般的表达式(像标识符和数字)。
词法分析器
给定上面的lex函数,为IMP定义一个词法分析器就非常简单了。首先我们要做的就是为标记符定义一系列的标签。IMP只需要三个标签。RESERVED表示一个保留字或操作符。INT表示一个文字整数。ID代表标识符。
Python
1
2
3
4
5
import lexer
RESERVED = 'RESERVED'
INT= 'INT'
ID = 'ID'
接下来定义词法分析器将会用到的标记符表达式。前两个表达式匹配空格和注释。它们没有标签,所以 lex 会丢弃它们匹配到的所有字符。
Python
1
2
3
token_exprs = [
(r'[ nt]+',None),
(r'#[^n]*', None),
然后,只剩下所有的操作符和保留字了。记住,每个正则表达式前面的“r”表示这个字符串是“raw”;Python不会处理任何转义字符。这使我们可以在字符串中包含进反斜线,正则表达式正是利用这一点来转义操作符比如“+”和“*”。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
(r':=', RESERVED),
(r'(',RESERVED),
(r')',RESERVED),
(r';', RESERVED),
(r'+',RESERVED),
(r'-', RESERVED),
(r'*',RESERVED),
(r'/', RESERVED),
(r'<=',RESERVED),
(r'<', RESERVED),
(r'>=',RESERVED),
(r'>', RESERVED),
(r'=', RESERVED),
(r'!=',RESERVED),
(r'and', RESERVED),
(r'or',RESERVED),
(r'not', RESERVED),
(r'if',RESERVED),
(r'then',RESERVED),
(r'else',RESERVED),
(r'while', RESERVED),
(r'do',RESERVED),
(r'end', RESERVED),
最后,轮到整数和标识符的表达式。要注意的是,标识符的正则表达式会匹配上面的所有的保留字,所以它一定要留到最后。
Python
1
2
3
(r'[0-9]+',INT),
(r'[A-Za-z][A-Za-z0-9_]*', ID),
]
既然正则表达式已经定义好了,我们还需要创建一个实际的lexer函数。
Python
1
2
def imp_lex(characters):
return lexer.lex(characters, token_exprs)
如果你对这部分感兴趣,这里有一些驱动代码可以测试输出:
Python
1
2
3
4
5
6
7
8
9
10
11
import sys
from imp_lexer import *
if __name__ == '__main__':
filename = sys.argv[1]
file = open(filename)
characters = file.read()
file.close()
tokens = imp_lex(characters)
for token in tokens:
print token
继续……
在本系列的下一篇文章中,我会讨论解析器组合,然后描述如何使用他们从lexer中生成的标记符列表建立抽象语法树。
如果你对于实现IMP解释器很感兴趣,你可以从这里下载全部的源码。
在源码包含的示例文件中运行解释器:
Python
1
python imp.py hello.imp
运行单元测试:
Python
1
python test.py