A. python jieba分词如何去除停用词
-*- coding: utf-8 -*-
import jieba
import jieba.analyse
import sys
import codecs
reload(sys)
sys.setdefaultencoding('utf-8')
#使用其他编码读取停用词表
#stoplist = codecs.open('../../file/stopword.txt','r',encoding='utf8').readlines()
#stoplist = set(w.strip() for w in stoplist)
#停用词文件是utf8编码
stoplist = {}.fromkeys([ line.strip() for line in open("../../file/stopword.txt") ])
#经过分词得到的应该是unicode编码,先将其转成utf8编码
B. python 中文切词使用停用词表问题
python中最好不要在list遍历中使用list.remove方法:
remove 仅仅 删除一个值的首次出现。
如果在 list 中没有找到值,程序会抛出一个异常
建议使用新的list存储要保留的内容,然后返回这个新list。比如
a_list=[1,2,3,4,5]
needs_to_be_removed=[3,4,5]
result=[]
forvina_list:
ifvnotinneeds_to_be_removed:
result.append(v)
printresult
C. python数据挖掘——文本分析
作者 | zhouyue65
来源 | 君泉计量
文本挖掘:从大量文本数据中抽取出有价值的知识,并且利用这些知识重新组织信息的过程。
一、语料库(Corpus)
语料库是我们要分析的所有文档的集合。
二、中文分词
2.1 概念:
中文分词(Chinese Word Segmentation):将一个汉字序列切分成一个一个单独的词。
eg:我的家乡是广东省湛江市-->我/的/家乡/是/广东省/湛江市
停用词(Stop Words):
数据处理时,需要过滤掉某些字或词
√泛滥的词,如web、网站等。
√语气助词、副词、介词、连接词等,如 的,地,得;
2.2 安装Jieba分词包:
最简单的方法是用CMD直接安装:输入pip install jieba,但是我的电脑上好像不行。
后来在这里:https://pypi.org/project/jieba/#files下载了jieba0.39解压缩后 放在Python36Libsite-packages里面,然后在用cmd,pip install jieba 就下载成功了,不知道是是什么原因。
然后我再anaconda 环境下也安装了jieba,先在Anaconda3Lib这个目录下将jieba0.39的解压缩文件放在里面,然后在Anaconda propt下输入 pip install jieba,如下图:
2.3 代码实战:
jieba最主要的方法是cut方法:
jieba.cut方法接受两个输入参数:
1) 第一个参数为需要分词的字符串
2)cut_all参数用来控制是否采用全模式
jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list代码示例( 分词 )
输出结果为: 我 爱
Python
工信处
女干事
每月 经过 下属 科室 都 要 亲口
交代
24 口 交换机 等 技术性 器件 的 安装
工作
分词功能用于专业的场景:
会出现真武七截阵和天罡北斗阵被分成几个词。为了改善这个现象,我们用导入词库的方法。
但是,如果需要导入的单词很多,jieba.add_word()这样的添加词库的方法就不高效了。
我们可以用jieba.load_userdict(‘D:PDM2.2金庸武功招式.txt’)方法一次性导入整个词库,txt文件中为每行一个特定的词。
2.3.1 对大量文章进行分词
先搭建语料库:
分词后我们需要对信息处理,就是这个分词来源于哪个文章。
四、词频统计
3.1词频(Term Frequency):
某个词在该文档中出现的次数。
3.2利用Python进行词频统计
3.2.1 移除停用词的另一种方法,加if判断
代码中用到的一些常用方法:
分组统计:
判断一个数据框中的某一列的值是否包含一个数组中的任意一个值:
取反:(对布尔值)
四、词云绘制
词云(Word Cloud):是对文本中词频较高的分词,给与视觉上的突出,形成“关键词渲染”,从而国旅掉大量的文本信息,使浏览者一眼扫过就可以领略文本的主旨。
4.1 安装词云工具包
这个地址:https://www.lfd.uci.e/~gohlke/pythonlibs/ ,可以搜到基本上所有的Python库,进去根据自己的系统和Python的版本进行下载即可。
在python下安装很方便,在anaconda下安装费了点劲,最终将词云的文件放在C:UsersAdministrator 这个目录下才安装成功。
五、美化词云(词云放入某图片形象中)
六、关键词提取
结果如下:
七、关键词提取实现
词频(Term Frequency):指的是某一个给定的词在该文档中出现的次数。
计算公式: TF = 该次在文档中出现的次数
逆文档频率(Inverse Document Frequency):IDF就是每个词的权重,它的大小与一个词的常见程度成反比
计算公式:IDF = log(文档总数/(包含该词的文档数 - 1))
TF-IDF(Term Frequency-Inverse Document Frequency):权衡某个分词是否关键词的指标,该值越大,是关键词的可能性就越大。
计算公式:TF - IDF = TF * IDF
7.1文档向量化
7.2代码实战
D. 在Python中,我有一个字典,想在字典中删除停用词表中的单词,程序应该怎么编。
en_dict={}
stop_en_dict={}
forkeyinstop_en_dict.keys():
ifkeyinen_dict:
delen_dict[key]
printen_dict
E. 如何用python对一个文件夹下的多个txt文本进行去停用词
在用 for 循环去停用词的部分,出错,仅去掉了 stopwords 中的部分停用词,且相同停用词只去除了一次。求大神告知错误之处,贴上代码再好不过!!
#encoding=utf-8
import sys
import re
import codecs
import os
import shutil
import jieba
import jieba.analyse
#导入自定义词典
#jieba.load_userdict("dict_.txt")
#Read file and cut
def read_file_cut():
#create path
stopwords = {}.fromkeys([ line.strip() for line in open('stopword.txt') ])
path = "Lon\\"
respath = "Lon_Result\\"
if os.path.isdir(respath): #如果respath这个路径存在
shutil.rmtree(respath, True) #则递归移除这个路径
os.makedirs(respath) #重新建立一个respath目录
num = 1
while num<=20:
name = "%d" % num
fileName = path + str(name) + ".txt"
resName = respath + str(name) + ".txt"
source = open(fileName, 'r')
if os.path.exists(resName):
os.remove(resName)
result = codecs.open(resName, 'w', 'utf-8')
line = source.readline()
line = line.rstrip('\n')
while line!="":
line = unicode(line, "utf-8")
output=''
seglist = jieba.cut(line,cut_all=False)
for seg in seglist:
seg=seg.encode('utf-8')
if seg not in stopwords:
output+=seg
output = ' '.join(list(seglist))#空格拼接
print output
result.write(output + '\r\n')
line = source.readline()
else:
print 'End file: ' + str(num)
source.close()
result.close()
num = num + 1
else:
print 'End All'
#Run function
if __name__ == '__main__':
read_file_cut()
我觉得是这样啦:
...
seglist = jieba.cut(line,cut_all=False)
seglist = (seg.encode('utf-8') for seg in seglist)
seglist = [seg for seg in seglist if seg not in stopwords]
output = ' '.join(seglist)
print output
...
不太懂你这两行的意思:
output+=seg
output = ' '.join(list(seglist))#空格拼接
每次 output 都会被设定成 ' '.join(list(seglist)) 那 output+=seg 好像就没有意义了。
F. python jieba停用词该如何设置
你把你的停用词排一下序,然后再给结巴看看。
或者加两个停用词,一个河北、一个西南部。
停用词通常是很短的高频出现的词语,真实情况你这样的不多。
如果你这种情况,不妨先分词,也不去停用词。
然后自己再来后续处理。