A. python中json处理
python中json文件处理涉及的四个函数json.loads()、json.mps()、json.load()、json.mp()。
1)json.mps()
将一个Python数据类型dict进行json格式的编码(字典->字符串)
eg:
age_dict = {'age1':'12', 'age2':'15'}
json_info = json.mps(age_dict)
print("json_info = {}".format(json_info))
print("json_info type = {}".format(type(json_info)))
2)json.loads()
将json格式数据转换为dict(字符串->字典)
json_age ='{"age1": "12", "age2": "15"}'
dict_age = json.loads(json_info)
print("json_age = {}".format(json_age))
print("dict_age type = {}".format(str(type(dict_age))))
3)json.load()
读取文件,将里json格式字符串转化为dict
with open(test.json, 'r') as file:
contents = json.load(file)
print(contents)
4)json.mp()
将dict类型转换为json格式字符串,存入文件
number = [1, 2, 3, 5]
file = 'number.json'
with open(file , 'w') as file:
json.mp(number, file)
B. 【Python】浅谈python中的json
一 前言
最近一直在做开发相关的工作--基于Django的web 平台,其中需要从model层传输数据到view 层做数据展示或者做业务逻辑处理。我们采用通用的Json格式--Json(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于阅读和程序解析。
二 认识Json
2.1 Json 结构
常见的Json格式为 “名称/值”对的集合,其中 值可以是对象,列表,字典,字符串等等。比如
backup_data = {"back_to_host": "dbbk0",
"ip_address": "10.10.20.3",
"host_name": "rac4",
"port": 3306}
2.2 使用Json
Python的Json模块序列化与反序列化的过程分别是 编码和解码。这两个过程涉及到两组不同的函数
编码 把一个Python对象编码转换成Json字符串,json.mps(data)/json.mp(data,file_handler)
解码 把Json格式字符串解码转换成Python对象,json.loads(data)/json.load(file_handler)
在python中要使用Json模块做相关操作,必须先导入:
import Json
2.3 主要函数
编码函数主要有 json.mps(data)/json.mp(data,file_handler)
json.mps()的参数是将python对象转换为字符串,如使用json.mps序列化的对象json_mps=json.mps({'a':1, 'b':2}) ,json_mps='{"b": 2, "a": 1}'
json.mp 是将内置类型序列化为json对象后写入文件。
解码函数主要由json.loads(data)/json.load(file_handler)
json.loads的参数是内存对象,把Json格式字符串解码转换成Python对象,json_loads=json.loads(d_json) #{ b": 2, "a": 1},使用load重新反序列化为dict
json.load()的参数针对文件句柄,比如本地有一个文件/tmp/test.json json_load=json.load(open('/tmp/test.json'))
具体案例参考如下:
In [3]: data={"back_to_host": "rac1",
...: "ip_address": "10.215.20.3",
...: "host_name": "rac3",
...: "port": 3306}
In [7]: json_str=json.mps(data)
In [8]: print json_str
{"ip_address": "10.215.20.3", "back_to_host": "rac1", "host_name": "rac3", "port": 3306}
In [9]: json_loads=json.load(json_str)
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-9-180506f16431> in <mole>()
----> 1 json_loads=json.load(json_str)
/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/__init__.pyc in load(fp, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
284
285 ""
注意 从上面的报错信息来看 json.loads 传参是字符串类型,并不是文件句柄,没有 read()属性。
In [10]: json_loads=json.loads(json_str)
In [11]: print json_loads
{u'back_to_host': u'rac1', u'ip_address': u'10.215.20.3', u'host_name': u'rac3', u'port': 3306}
In [12]: type(json_loads)
Out[12]: dict
In [13]: type(json_str)
Out[13]: str
利用mp 将数据写入 mp.json
In [17]: with open('/tmp/mp.json','w') as f:
...: json.mp(json_str,f)
...:
yangyiDBA:~ yangyi$ cat /tmp/mp.json
"{\"ip_address\": \"10.10.20.3\", \"back_to_host\": \"rac1\", \"host_name\": \"rac3\", \"port\": 3306}"
yangyiDBA:~ yangyi$
利用json.load 将mp.sjon的数据读出来并赋值给 data
In [18]: with open('/tmp/mp.json','r') as f:
...: data=json.load(f)
...:
In [19]: print data
{"ip_address": "10.10.20.3", "back_to_host": "rac1", "host_name": "rac3", "port": 3306}
三 小结
本文算是一篇学习笔记,主要对比了json.loads/json.load , json.mps/ json.mp 的使用差异 ,方便以后更好的使用json 。
以上为本次分享内容,感谢观看。
C. Python爬虫(七)数据处理方法之JSON
JSON 指的是 JavaScript 对象表示法(JavaScript Object Notation),是轻量级的文本数据交换格式,且具有自我描述性,更易理解。
JSON看起来像python类型(列表,字典)的字符串。
在之前的文章中,我们说到了怎么用response的方法,获取到网页正确解码后的字符串。如果还有不懂的,可以先阅读 Python爬虫(三)Requests库 。接下来以有道翻译为例子,说说怎么通过网页解码后的字符串,提取到翻译结果。
再结合上述有道翻译的例子,得到字典类型的返回结果,并提取出来翻译结果。
将上述例子的dict_json换成str字符串,再写入文本中。
执行完上述的程序,会得到一个fanyi.txt的文件,其结果如下:{"type": "ZH_CN2EN", "errorCode": 0, "elapsedTime": 1, "translateResult": [[{"src": "\u4eba\u751f\u82e6\u77ed\uff0c\u6211\u7528python", "tgt": "Life is too short, I use python"}]]}。这样子的一份文档,中文部分显示的是二进制,且格式非常不利于阅读,这并不是我们想要的结果。好在json.mps()为我们提供的两个方法,以帮助我们更好阅读文档。
1.ensure_ascii,能够让中文显示成中文;
2.indent,能够让下一行在第一行的基础上空格。
其用法如下:
D. python中如何遍历json数组
1、创建python文件,testjson.py;
E. 如何用Python,查找json格式中指定的数据,然后输出这些查找到的数据
用Python查找json格搏数铅式中指定的数据输出这些查找到的数据的操作步基好骤如下:
1,打开一个编辑器,例如sublime text 3,然后创建毕蚂一个新的PY文档。
F. py3笔记8:json结构的校验
python中使用json模块实现python对象与json的转换
要处理的是文件而不是字符串,你可以使用 json.mp() 和 json.load() 来编码和解码JSON数据
Json Schema 是一个用于验证Json数据结构的强大工具
使用范围: 接口测试中数据值校验、数据类型校验、json数据结构校验
官网: https://json-schema.org/understanding-json-schema/conventions.html
安装: pip install jsonschema
type 关键字是json模式的基础,指定架构的数据类型:string、number、object、array、boolean、null
object关键字,在python中对应的是dict类型
数组属性array,用于有序元素
在python中,array类似于list或tuple
在Json,通常有2种方式验证
1. 列表验证: 任意长度的序列,其中每个元素匹配相同的模式
2. 元组验证: 一个固定长度的序列,其中每个项目可能具有不同的模式
1. 列表验证
2. 元组验证
针对每一个元素解释说明,默认校验schema中设置的前n项
将items关键字设置成一个数组, 其中每个项目都是一个与文档数组的每个索引相对应的模式,
也就是一个数组, 第一个元素模式验证输入数组的第一个元素. 第二个元素模式验证输入数组的第二个元素
例如, 在以下的模式, anyOf关键字用于表示给定值可能对任何给定的子模式有效。第一个子模式需要一个最大长度为5的字符串。第二个子模式需要一个最小值为0的数字。只要一个值对这些模式中的任何一个进行验证,它就被认为整个组合模式有效。
{ ‘anyOf’: [ {‘type’: ‘string’, ‘maxLength’: 5}, {‘type’:’string’, ‘minimum’: 0 }]}
用于组合模式的关键字是:
该$schema关键字用于声明JSON片段实际上是JSON模式的一部分。它还声明了针对该模式编写的JSON Schema标准的哪个版本。
建议所有JSON模式都有一个$schema条目,该条目必须位于根目录下。因此,大多数情况下,您需要在架构的根目录下: