㈠ python和R语言的区别
如下:
Python入门简单,而R则相对比较难一些。R做文本挖掘现在还有点弱,当然优点在于函数都给你写好了,你只需要知道参数的形式就行了,有时候即使参数形式不对,R也能"智能地”帮你适应。这种简单的软件适合想要专注于业务的人。
Python几乎都可以做,函数比R多,比R快。它是一门语言,R更像是一种软件,所以python更能开发出flexible的算法。
Python适合处理大量数据,而R则在这方面有很多力不从心,当然这么说的前提是对于编程基础比较一般的童鞋,对于大牛来说,多灵活运用矢量化编程的话,R的速度也不会太差。
介绍
Python和R本身在数据分析和数据挖掘方面都有比较专业和全面的模块,很多常用的功能,比如矩阵运算、向量运算等都有比较高级的用法,所以使用起来产出比大。
这两门语言对于平台方面适用性比较广,linux、window都可以使用,并且代码可移植性还算不错的。对于学数理统计的人来说,应该大多用过MATLAB以及mintab等工具,Python和R比较贴近这些常用的数学工具,使用起来有种亲切感。
㈡ 自然语言处理和文本挖掘的关系
文胡陪本挖掘指的是从文本数据中获取有价值的信息和知识,它是数据挖掘中的一种方法。文本挖掘中最重要最基本的应用是实现文本的分类和聚类,前者是有监督的挖掘算法,后者是无监督的挖掘算法。
文本挖掘是一个多学科混杂的领域,涵盖了多种技术,包括数据挖掘技术、信息抽取、信息检索,机器学习、自然语言处理、计算语言学、统计数据分析、线性几何、概率理论甚至还有图论。
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所裤掘蠢以它与语言学的研究有着密切的联系,但又有重要的区别。
所以自然语言处理与文本挖掘是相互包含关系,可以相互联系相互影响。
而北京理工大学大数据搜索与挖掘实验室张华平主任研发的NLPIR大数据语义智能分析技术是满足大数据挖掘对语法、词法和语义的综合应用。NLPIR大数据语义智能分析平台是根据中文数据挖掘的综合需求,融合了网络精准采集、自然语言理解、文本挖掘和语义搜散兆索的研究成果,并针对互联网内容处理的全技术链条的共享开发平台。
NLPIR大数据语义智能分析平台主要有精准采集、文档转化、新词发现、批量分词、语言统计、文本聚类、文本分类、摘要实体、智能过滤、情感分析、文档去重、全文检索、编码转换等十余项功能模块,平台提供了客户端工具,云服务与二次开发接口等多种产品使用形式。各个中间件API可以无缝地融合到客户的各类复杂应用系统之中,可兼容Windows,Linux, Android,Maemo5, FreeBSD等不同操作系统平台,可以供java,Python,C,C#等各类开发语言使用。
㈢ 大数据分析一般用什么工具分析
大数据分析是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据分析产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。
大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。
一、Hadoop
Hadoop是一个开源框架,它允许在整个集群使用简单编程模型计算机的分布式环境存储并处理大数据。它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储。
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop
是可靠的,即使计算元素和存储会失败,它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,它采用并行的方式工作,通过并行处理加快处理速度。Hadoop
还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Pentaho BI 平台,Pentaho Open BI
套件的核心架构和基础,是以流程为中心的,因为其中枢控制器是一个工作流引擎。工作流引擎使用流程定义来定义在BI
平台上执行的商业智能流程。流程可以很容易的被定制,也可以添加新的流程。BI
平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。这些组件通过
J2EE、WebService、SOAP、HTTP、Java、JavaScript、Portals等技术集成到Pentaho平台中来。
Pentaho的发行,主要以Pentaho SDK的形式进行。
Pentaho
SDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的
Pentaho网络服务器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为
Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;
Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。
Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE
服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。
七、Druid
Druid是实时数据分析存储系统,Java语言中最好的数据库连接池。Druid能够提供强大的监控和扩展功能。
八、Ambari
大数据平台搭建、监控利器;类似的还有CDH
1、提供Hadoop集群
Ambari为在任意数量的主机上安装Hadoop服务提供了一个逐步向导。
Ambari处理集群Hadoop服务的配置。
2、管理Hadoop集群
Ambari为整个集群提供启动、停止和重新配置Hadoop服务的中央管理。
3、监视Hadoop集群
Ambari为监视Hadoop集群的健康状况和状态提供了一个仪表板。
九、Spark
大规模数据处理框架(可以应付企业中常见的三种数据处理场景:复杂的批量数据处理(batch data
processing);基于历史数据的交互式查询;基于实时数据流的数据处理,Ceph:Linux分布式文件系统。
十、Tableau Public
1、什么是Tableau Public - 大数据分析工具
这是一个简单直观的工具。因为它通过数据可视化提供了有趣的见解。Tableau
Public的百万行限制。因为它比数据分析市场中的大多数其他玩家更容易使用票价。使用Tableau的视觉效果,您可以调查一个假设。此外,浏览数据,并交叉核对您的见解。
2、Tableau Public的使用
您可以免费将交互式数据可视化发布到Web;无需编程技能;发布到Tableau
Public的可视化可以嵌入到博客中。此外,还可以通过电子邮件或社交媒体分享网页。共享的内容可以进行有效硫的下载。这使其成为最佳的大数据分析工具。
3、Tableau Public的限制
所有数据都是公开的,并且限制访问的范围很小;数据大小限制;无法连接到[R ;读取的唯一方法是通过OData源,是Excel或txt。
十一、OpenRefine
1、什么是OpenRefine - 数据分析工具
以前称为GoogleRefine的数据清理软件。因为它可以帮助您清理数据以进行分析。它对一行数据进行操作。此外,将列放在列下,与关系数据库表非常相似。
2、OpenRefine的使用
清理凌乱的数据;数据转换;从网站解析数据;通过从Web服务获取数据将数据添加到数据集。例如,OpenRefine可用于将地址地理编码到地理坐标。
3、OpenRefine的局限性
Open Refine不适用于大型数据集;精炼对大数据不起作用
十二、KNIME
1、什么是KNIME - 数据分析工具
KNIME通过可视化编程帮助您操作,分析和建模数据。它用于集成各种组件,用于数据挖掘和机器学习。
2、KNIME的用途
不要写代码块。相反,您必须在活动之间删除和拖动连接点;该数据分析工具支持编程语言;事实上,分析工具,例如可扩展运行化学数据,文本挖掘,蟒蛇,和[R
。
3、KNIME的限制
数据可视化不佳
十三、Google Fusion Tables
1、什么是Google Fusion Tables
对于数据工具,我们有更酷,更大版本的Google Spreadsheets。一个令人难以置信的数据分析,映射和大型数据集可视化工具。此外,Google
Fusion Tables可以添加到业务分析工具列表中。这也是最好的大数据分析工具之一。
2、使用Google Fusion Tables
在线可视化更大的表格数据;跨越数十万行进行过滤和总结;将表与Web上的其他数据组合在一起;您可以合并两个或三个表以生成包含数据集的单个可视化;
3、Google Fusion Tables的限制
表中只有前100,000行数据包含在查询结果中或已映射;在一次API调用中发送的数据总大小不能超过1MB。
十四、NodeXL
1、什么是NodeXL
它是关系和网络的可视化和分析软件。NodeXL提供精确的计算。它是一个免费的(不是专业的)和开源网络分析和可视化软件。NodeXL是用于数据分析的最佳统计工具之一。其中包括高级网络指标。此外,访问社交媒体网络数据导入程序和自动化。
2、NodeXL的用途
这是Excel中的一种数据分析工具,可帮助实现以下方面:
数据导入;图形可视化;图形分析;数据表示;该软件集成到Microsoft Excel
2007,2010,2013和2016中。它作为工作簿打开,包含各种包含图形结构元素的工作表。这就像节点和边缘;该软件可以导入各种图形格式。这种邻接矩阵,Pajek
.net,UCINet .dl,GraphML和边缘列表。
3、NodeXL的局限性
您需要为特定问题使用多个种子术语;在稍微不同的时间运行数据提取。
十五、Wolfram Alpha
1、什么是Wolfram Alpha
它是Stephen Wolfram创建的计算知识引擎或应答引擎。
2、Wolfram Alpha的使用
是Apple的Siri的附加组件;提供技术搜索的详细响应并解决微积分问题;帮助业务用户获取信息图表和图形。并有助于创建主题概述,商品信息和高级定价历史记录。
3、Wolfram Alpha的局限性
Wolfram Alpha只能处理公开数字和事实,而不能处理观点;它限制了每个查询的计算时间;这些数据分析统计工具有何疑问?
十六、Google搜索运营商
1、什么是Google搜索运营商
它是一种强大的资源,可帮助您过滤Google结果。这立即得到最相关和有用的信息。
2、Google搜索运算符的使用
更快速地过滤Google搜索结果;Google强大的数据分析工具可以帮助发现新信息。
十七、Excel解算器
1、什么是Excel解算器
Solver加载项是Microsoft Office Excel加载项程序。此外,它在您安装Microsoft
Excel或Office时可用。它是excel中的线性编程和优化工具。这允许您设置约束。它是一种先进的优化工具,有助于快速解决问题。
2、求解器的使用
Solver找到的最终值是相互关系和决策的解决方案;它采用了多种方法,来自非线性优化。还有线性规划到进化算法和遗传算法,以找到解决方案。
3、求解器的局限性
不良扩展是Excel Solver缺乏的领域之一;它会影响解决方案的时间和质量;求解器会影响模型的内在可解性;
十八、Dataiku DSS
1、什么是Dataiku DSS
这是一个协作数据科学软件平台。此外,它还有助于团队构建,原型和探索。虽然,它可以更有效地提供自己的数据产品。
2、Dataiku DSS的使用
Dataiku DSS - 数据分析工具提供交互式可视化界面。因此,他们可以构建,单击,指向或使用SQL等语言。
3、Dataiku DSS的局限性
有限的可视化功能;UI障碍:重新加载代码/数据集;无法轻松地将整个代码编译到单个文档/笔记本中;仍然需要与SPARK集成
以上的工具只是大数据分析所用的部分工具,小编就不一一列举了,下面把部分工具的用途进行分类:
1、前端展现
用于展现分析的前端开源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。
用于展现分析商用分析工具有Style Intelligence、RapidMiner Radoop、Cognos, BO, Microsoft
Power BI, Oracle,Microstrategy,QlikView、 Tableau 。
国内的有BDP,国云数据(大数据分析魔镜),思迈特,FineBI等等。
2、数据仓库
有Teradata AsterData, EMC GreenPlum, HP Vertica 等等。
3、数据集市
有QlikView、 Tableau 、Style Intelligence等等。
㈣ 对于机器学习和文本挖掘,python和java哪个更合适
您好, 针对机器学习领域和文本挖掘,都是python的强项, 对于机器学习与文本挖掘,python有大量的第三方库可以使用, python同时也是非常适合写网络爬虫的,然后对爬下来的数据进行文本的挖掘。