经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。
Scrapy是一个快速、功能强大的网络爬虫框架。
可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。
简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。
使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。
当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。
PyCharm安装
测试安装:
出现框架版本说明安装成功。
掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!
先上图:
整个结构可以简单地概括为: “5+2”结构和3条数据流
5个主要模块(及功能):
(1)控制所有模块之间的数据流。
(2)可以根据条件触发事件。
(1)根据请求下载网页。
(1)对所有爬取请求进行调度管理。
(1)解析DOWNLOADER返回的响应--response。
(2)产生爬取项--scraped item。
(3)产生额外的爬取请求--request。
(1)以流水线方式处理SPIDER产生的爬取项。
(2)由一组操作顺序组成,类似流水线,每个操作是一个ITEM PIPELINES类型。
(3)清理、检查和查重爬取项中的HTML数据并将数据存储到数据库中。
2个中间键:
(1)对Engine、Scheler、Downloader之间进行用户可配置的控制。
(2)修改、丢弃、新增请求或响应。
(1)对请求和爬取项进行再处理。
(2)修改、丢弃、新增请求或爬取项。
3条数据流:
(1):图中数字 1-2
1:Engine从Spider处获得爬取请求--request。
2:Engine将爬取请求转发给Scheler,用于调度。
(2):图中数字 3-4-5-6
3:Engine从Scheler处获得下一个要爬取的请求。
4:Engine将爬取请求通过中间件发送给Downloader。
5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。
6:Engine将收到的响应通过中间件发送给Spider处理。
(3):图中数字 7-8-9
7:Spider处理响应后产生爬取项--scraped item。
8:Engine将爬取项发送给Item Pipelines。
9:Engine将爬取请求发送给Scheler。
任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。
作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。
Scrapy采用命令行创建和运行爬虫
PyCharm打开Terminal,启动Scrapy:
Scrapy基本命令行格式:
具体常用命令如下:
下面用一个例子来学习一下命令的使用:
1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:
执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命名为pythonDemo。
2.产生一个Scrapy爬虫,以教育部网站为例http://www.moe.gov.cn:
命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。
命令仅用于生成demo.py文件,该文件也可以手动生成。
观察一下demo.py文件:
3.配置产生的spider爬虫,也就是demo.py文件:
4.运行爬虫,爬取网页:
如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。
以上就是Scrapy框架的简单使用了。
Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。
Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。
Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来操作。
2. 如何通过网络爬虫获取网站数据
这里以python为例,简单介绍一下如何通过python网络爬虫获取网站数据,主要分为静态网页数据的爬埋山差取和动态网页数据的爬取,实验环境win10+python3.6+pycharm5.0,主要内容如下:
静态网页数据
这里的数据都嵌套在网页源码中,所以直接requests网页源码进行解析就行,下面我简单介绍一下,这里以爬取糗事网络上的数据为例:
1.首先,打开原网页,如下,这里假设要爬取的字段包括昵称、内容、好笑数和评论数:
接着查看网页源码,如下,可以看的出来,所有的数据都嵌套在网页中:
2.然后针对以上网页结构,我们就可以直接编写爬虫代码,解析网页并提取出我们需要的数据了,测试代码如下,非常简单,主要用到requests+BeautifulSoup组合,其中requests用于获取网页源码,BeautifulSoup用于解析网页提取数据:
点击运行这个程序,效果如下,已经成功爬取了到我们需要的数据:
动态网页数据
这里的数据都没有在网页源码中(所以直接请求页面是获取不到任何数据的),大部分情况下都是存储在一唯唯个json文件中,只有在网页更新的时候,才会加载数据,下面我简单介绍一下这种方式,这里以爬取人人贷上面的数据为例:
1.首先,打开原网页,如下,这里假设要爬取的数据包括年利率,借款标题,期限,金额和进度:
接着按F12调出开发者工具,依次点击“Network”->“XHR”,F5刷新页面,就可以找打动态加载的json文件,如下,也就是我们需要爬弯皮取的数据:
2.然后就是根据这个json文件编写对应代码解析出我们需要的字段信息,测试代码如下,也非常简单,主要用到requests+json组合,其中requests用于请求json文件,json用于解析json文件提取数据:
点击运行这个程序,效果如下,已经成功爬取到我们需要的数据:
至此,我们就完成了利用python网络爬虫来获取网站数据。总的来说,整个过程非常简单,python内置了许多网络爬虫包和框架(scrapy等),可以快速获取网站数据,非常适合初学者学习和掌握,只要你有一定的爬虫基础,熟悉一下上面的流程和代码,很快就能掌握的,当然,你也可以使用现成的爬虫软件,像八爪鱼、后羿等也都可以,网上也有相关教程和资料,非常丰富,感兴趣的话,可以搜一下,希望以上分享的内容能对你有所帮助吧,也欢迎大家评论、留言进行补充。
3. python爬虫怎么做
大到各类搜索引擎,小到日常数据采集,都离不开网络爬虫。爬虫的基本原理很简单,遍历网络中网页,抓取感兴趣的数据内容。这篇文章会从零开始介绍如何编写一个网络爬虫抓取数据做告宏,然后会一步步逐渐完善爬虫的抓取功能。
工具安装
我们需要安装python,python的requests和BeautifulSoup库。我们用Requests库用抓取网页的内容,使用BeautifulSoup库来从网页中提取数据。
安装python
运行pipinstallrequests
运行pipinstallBeautifulSoup
抓取网页
完成必要工具安装后,我们正式开始编写我们的爬虫。我们的第一个任务是要抓取所有豆瓣上的图书信息。我们以/subject/26986954/为例,首先看看开如何抓取网页的内容。
使用python的requests提供的get()方法我们可以非常简单的获取的指定网页的内纯册容,代码如下:
提取内容
抓取到网页的内容后,我们要做的就是提取出我们想要的内容。在我们的第一个例子中,我们只需要提取书名。首先我们导入BeautifulSoup库,使用BeautifulSoup我们可以非常简单的提取网页的特定内容。
连续抓取网页
到目前为止,我们已经可以抓取单个网页的内容了,现在让我们看看如何抓取整个网站的内容。我们知道网页之间是通过超链接互相连接在一起的,通过链接我们可以访问整个网络。所以我们可以从每个页面提取出包含指向其它网页的链接,然后重复的对新链接进行抓取。
通过以上几步我们就可以写出一个最原始的爬虫。在理解了爬虫原理的基础上,我们可以进一步对爬虫进行完善。
写过一个系列关于爬虫的文章:/i6567289381185389064/。感兴趣的可以前往查看。
Python基本环境的搭建,爬虫的基本原理以及爬虫的原型
Python爬虫入门(第1部分)
如何使用BeautifulSoup对网页内容进行提取
Python爬虫入门(第2部分)
爬虫运行时数据的存储数据,以SQLite和MySQL作为示例
Python爬虫入门(第3部分)
使用seleniumwebdriver对动态网页进行抓取
Python爬虫入门(第4部分)
讨论了如何处理网站的反爬虫策略
Python爬友如虫入门(第5部分)
对Python的Scrapy爬虫框架做了介绍,并简单的演示了如何在Scrapy下进行开发
Python爬虫入门(第6部分)
4. python爬虫学习教程哪个好
第一阶段
Python开发基础和核心特性1.变量及运算符2.分支及循环3.循环及字符串4.列表及嵌套列表5.字典及项目练习6.函数的使用7.递归及文件处理8.文件9.面向对象10.设计模式及异常处理11.异常及模块的使用12.坦克大战13.核心编程14.高级特性15.内存管理
第二阶段
数据库和linux基础1.并发编程2.网络通信3.MySQL4.Linux5.正则表达式
第三阶段
web前端开发基础1.html基本标签2.css样式3.css浮动和定位4.js基础5.js对象和函数6.js定时器和DOM7.js事件响应8.使用jquery9.jquery动画特效10.Ajax异步网络请求
第四阶段
Python Web框架阶段1.Django-Git版本控制2.Django-博客项目3.Django-商城项目4.Django模型层5.Django入门6.Django模板层7.Django视图层8.Tornado框架
第五阶段
Python 爬虫实战开发1.Python爬虫基础2.Python爬虫Scrapy框架
5. Python 爬虫的入门教程有哪些值得推荐的
Python 爬虫的入门教程有很多值得推荐的,以下是一些比较受欢迎和推荐的教程:
1.《精通 Python 网络爬虫》:这本书是一本入门级的 Python 爬虫教程,适合初学者学习。
Python3 网络爬虫实战:这是一个在线教程,详细介绍了 Python 爬虫的基础知识,包括爬虫的原理、如何使用 Python 爬取网页、如何使用正则表达式和 XPath 解析网页等。
Python 爬虫指南:这是一个在线教程,通过几个简单的例子来介绍 Python 爬虫的基础知识。
网络爬虫实战:这是一个在线课程,通过几个实际案例来介绍 Python 爬虫的基础知识和进阶技巧。
Python 爬虫实战:这是一个在线课程,通过几个实际案例来介绍 Python 爬虫的基础知识和进阶技巧。
以上是一些比较受欢迎和推荐的 Python 爬虫入门教程,你可以根据自己的需求和学习进度选择适合自己的教程。
bilibili上也有一些视频教程。
6. 如何用Python做爬虫
在我们日常上网浏览网页的时候,经常会看到一些好看的图片,我们就希望把这些图片保存下载,或者用户用来做桌面壁纸,或者用来做设计的素材。
我们最常规的做法就是通过鼠标右键,选择另存为。但有些图片鼠标右键的时候并没有另存为选项,还有办法就通过就是通过截图工具截取下来,但这样就降低图片的清晰度。好吧其实你很厉害的,右键查看页面源代码。
我们可以通过python来实现这样一个简单的爬虫功能,把我们想要的代码爬取到本地。下面就看看如何使用python来实现这样一个功能。
7. 如何用Python爬虫抓取网页内容
首先,你要安装requests和BeautifulSoup4,然后执行如下代码.
importrequests
frombs4importBeautifulSoup
iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'
res=requests.get(iurl)
res.encoding='utf-8'
#print(len(res.text))
soup=BeautifulSoup(res.text,'html.parser')
#标题
H1=soup.select('#artibodyTitle')[0].text
#来源
time_source=soup.select('.time-source')[0].text
#来源
origin=soup.select('#artibodyp')[0].text.strip()
#原标题
oriTitle=soup.select('#artibodyp')[1].text.strip()
#内容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#责任编辑
ae=soup.select('.article-editor')[0].text
这样就可以了
8. python网页爬虫教程
现行环境下,大数据与人工智能的重要依托还是庞大的数据和分析采集,类似于神誉淘宝 京东 网络 腾讯级别的企业 能够通过数据可观的用户群体获取需要的数据,而一般企业可能就没有这种通过产品获取数据的能力和条件,想从事这方面的工作,需掌握以下知识:
1. 学习Python基础知识并实现基本的爬虫过程
一般获取数据的过程都是按照 发送请求-获得页面反馈-解析并且存储数据 这三个流程来实现的。这个过程其实就是模拟了一个人工浏览网页的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,我们可以按照requests 负责连接网谨唯站,返回网页,Xpath 用于解析网页,便于抽取数据。
2.了解非结构化数据的存储
爬虫抓取的数据结构复杂 传统的结构化数据库可能并不是特别适合我们使用。我们前期推荐使用MongoDB 就可以。
3. 掌握一些常用的反爬虫技巧
使用代理IP池、抓包、验证码的OCR处理等处理方式即可以解决大部分网站的反爬虫策略。
4.了解分布式存储
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具游晌段就可以了。