导航:首页 > 编程语言 > pythonnumpy遍历

pythonnumpy遍历

发布时间:2023-08-11 20:05:27

❶ numpy如何查找数组中个数最多的元素

python">importnumpyasnp
b=np.array([[0,4,4],[2,0,3],[1,3,4]])
print('b=')
print(b)
l=sorted([(np.sum(b==i),i)foriinset(b.flat)])
'''
np.sum(b==i)#统计b中等于i的元素个数
set(b.flat)#将b转为一维数组后,去除重复元素
sorted()#按元素个数从小到大排序
l[-1]#取出元素个数最多的元组对(count,element)
'''
print('maxtimesofelementinbis{1}with{0}times'.format(*l[-1]))

[willie@localhost pys]$ python3 countnumpy.py

b=

[[0 4 4]

[2 0 3]

[1 3 4]]

max times of element in b is 4 with 3 times

❷ Python-Numpy基础

如果你已经装有 Anaconda,那么你可以使用以下命令通过终端或命令提示符安装 NumPy:
conda install numpy
如果你没有 Anaconda,那么你可以使用以下命令从终端上安装 NumPy:
pip install numpy
安装好 NumPy 后,你就可以启动 Jupyter notebook 开始学习了。接下来从 NumPy 数组开始

就好比一个矩阵

numpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组:

参数说明:
参数 描述
shape 数组形状
dtype 数据类型,可选
order 有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。
举例

输出结果

创建指定大小的数组,数组元素以 0 来填充:

举例

结果输出

创建指定形状的数组,数组元素以 1 来填充:

举例

同样是类型,但是注意这个和上边的区别,一个是数组的形式,一个是矩阵的形式。

❸ (Python)numpy 常用操作

不放回取样:
从列表ori中不放回地取n个数

通过这种操作,我们可以获得一个二维列表的子集:
(如果这个二维列表是图的邻接矩阵,那么就是对图进行随机采样,获得一个图的子图)

首先要注意,"+" 操作对于list和numpy.array是完全不同的
python 中的list,"+"代表拼接:

在numpy.array中,"+"代表矩阵相加

keepdim指的是维度不变,常在sum中使用。如:

会发现,keepdim之后还是二维的

这里要注意,pytorch和numpy里max()函数的返回值是不同的
pytorch:

也就是说,max(1)代表求第一维的最大值,对于二维数组来说,就是求纵向的最大值,然后,第一个返回值是最大值所形成数组,第二个返回值是最大值所在的索引。这一个技巧在机器学习的分类任务中很常用,比如我们的分类任务是把数据分成m类,那么最终我们模型的输出是m维的,对于n个样本就是n*m,如果要判断我们的模型最终的分类结果,就是找n个样本里,每个样本m维输出的最大值索引,代表样本是这个类的可能性最大。我们可以方便地用这种方式找到最大值地索引:

其中test_out是模型输出,predict_y则是分类结果
另外一点要注意的是,numpy与pytorch不同,numpy的max()只有一个返回值:

也就是说,numpy.max()不会返回最大值所在的索引

❹ python关于numpy基础问题

Python发展至今,已经有越来越多的人使用python进行科学技术,NumPY是python中的一款高性能科学计算和数据分析的基础包。
ndarray
ndarray(以下简称数组)是numpy的数组对象,需要注意的是,它是同构的,也就是说其中的所有元素必须是相同的类型。其中每个数组都有一个shape和dtype。
shape既是数组的形状,比如
复制代码
1 import numpy as np
2 from numpy.random import randn
3
4 arr = randn(12).reshape(3, 4)
5
6 arr
7
8 [[ 0.98655235 1.20830283 -0.72135183 0.40292924]
9 [-0.05059849 -0.02714873 -0.62775486 0.83222997]
10 [-0.84826071 -0.29484606 -0.76984902 0.09025059]]
11
12 arr.shape
13 (3, 4)
复制代码
其中(3, 4)即代表arr是3行4列的数组,其中dtype为float64
一下函数可以用来创建数组
array将输入数据转换为ndarray,类型可制定也可默认
asarray将输入转换为ndarray
arange类似内置range
ones、ones_like根据形状创建一个全1的数组、后者可以复制其他数组的形状
zeros、zeros_like类似上面,全0
empty、empty_like创建新数组、只分配空间
eye、identity创建对角线为1的对角矩阵
数组的转置和轴对称
转置是多维数组的基本运算之一。可以使用.T属性或者transpose()来实现。.T就是进行轴对换而transpose则可以接收参数进行更丰富的变换
复制代码
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print arr.T
[[0 3]
[1 4]
[2 5]]
arr = np.arange(24).reshape((2,3,4))
print arr
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
print arr.transpose((0,1,2))
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
复制代码
数组的运算
大小相等的数组之间做任何算术运算都会将运算应用到元素级别。
复制代码
1 arr = np.arange(9).reshape(3, 3)
2 print arr
3
4 [[0 1 2]
5 [3 4 5]
6 [6 7 8]]
7
8 print arr*arr
9
10 [[ 0 1 4]
11 [ 9 16 25]
12 [36 49 64]]
13
14 print arr+arr
15
16 [[ 0 2 4]
17 [ 6 8 10]
18 [12 14 16]]
19
20 print arr*4
21
22 [[ 0 4 8]
23 [12 16 20]
24 [24 28 32]]
复制代码
numpy的简单计算中,ufunc通用函数是对数组中的数据执行元素级运算的函数。
如:
复制代码
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print np.square(arr)
[[ 0 1 4]
[ 9 16 25]]
复制代码
类似的有:abs,fabs,sqrt,square,exp,log,sign,ceil,floor,rint,modf,isnan,isfinite,isinf,cos,cosh,sin,sinh,tan,tanh,
add,subtract,multiply,power,mod,equal,等等

❺ Numpy基础20问

一言以蔽之,numpy是python中基于数组对象的科学计算库。

提炼关键字,可以得出numpy以下三大特点:

因为numpy是一个python库,所以使用python包管理工具pip或者conda都可以安装。

安装python后,打开cmd命令行,输入:

即可完成安装。

n维数组(ndarray)对象,是一系列 同类数据 的集合,可以进行索引、切片、迭代操作。

numpy中可以使用 array 函数创建数组:

判断一个数组是几维,主要是看它有几个轴(axis)。

一个轴表示一维数组,两个轴表示二维数组,以此类推。

每个轴都代表一个一维数组。

比如说,二维数组第一个轴里的每个元素都是一个一维数组,也就是第二个轴。

一维数组一个轴:

二维数组两个轴:

三维数组三个轴:

以此类推n维数组。

numpy中常用 array 函数创建数组,传入列表或元组即可。

创建一维数组,并指定数组类型为 int :

创建二维数组:

还可以使用 arange 函数创建一维数字数组,用法类似python的 range 函数.

numpy的 random 模块用来创建随机数组。

random模块还有其他函数,这里不多说。

前面说到,数组维度即代表轴的数量。

我们可以通过数组(adarray)对象的ndim或shape属性,来查看轴的数量。

数组(ndarray)对象的 size 属性可以查看数组包含元素总数。

还可以通过 shape 属性返回元素的乘积,来计算数组元素数量。

Numpy支持的数据类型非常多,所以很适合做数值计算。
下面给出常见的数据类型:

数组(adarrry)对象提供 dtype 属性,用来查看数组类型。

前面说过,数组的 shape 属性返回一个元组,能够反映数组的形状,包括维度以及每个轴的元素数量。

那么如果给定一个数组,怎么改变其形状呢?

常用的方式有两种:

比如说我要将一个二维数组转换为三维数组。

reshape 方法可以传入整数或者元组形式的参数。

传入的参数和 shape 属性返回的元组的含义是一样的。

例如, x2.reshape(1,2,3) 是将二维数组转换成三维数组,参数个数代表要转换的维度,参数数字从左到右分别表示0轴、1轴、2轴的元素数量。

resize 方法和 reshape 方法使用形式一样,区别是 resize 方法改变了原始数组形状。

numpy一维数组的索引和切片操作类似python列表,这里不多讲。

比如说取一维数组前三个元素。

重点是对多维数组的索引和切片。

多维数组有多个轴,那么就需要对每个轴进行索引。

例如,三维数组形状为(x,y,z),分别代表:0轴有x个元素、1轴有y个元素,2轴有z个元素。

对0、1、2轴进行索引,如果取o轴第2个元素、1轴第0个元素、2轴第3个元素,那么索引形式就为[2,0,3]。

切片也是同样道理。

如果取o轴前2个元素、1轴前1个元素、2轴后2个元素,那么切片形式就为[:2,:1,-2:]。

说到迭代,大家很容易想到直接对数组直接使用 for 循环操作,对于一维数组来说,当然是可以的。

但对于多维数组,迭代是相对于0轴完成的,就是多维数组最外层的那一维。

你没有办法直接遍历数组里每一个元素,嵌套循环又太低效。

这个时候就需要用到 flat 方法,它可以将多维数组平铺为一维的迭代器。

数组(ndarray)对象提供了ravel方法,用来将多维数组展开为一维数组。

广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对多个数组的算术运算通常在相应的元素上进行。

较小的数组在较大的数组上“广播”,以便它们具有兼容的形状。

比如说一个一维数组乘以一个数字,相当于一维数组里每个元素都乘以这个数。

如果相同维度的数组进行运算,其shape相同,那么广播就是两个数组相同位数的元素进行运算。

如果两个数组维度不同,进行运算,这里就触发了广播的两个规则。

这两个规则保证了不同维度数组进行运算时,其维度自动调整成一致。

numpy提供了 transpose 函数用以对数组进行维度的调换,也就是转置操作。

转置后返回一个新数组。

当然,可以用更简单的方法。

数组对象提供了 T 方法,用于转置,同样会返回一个新数组。

numpy的 concatenate 函数用于沿指定轴连接相同形状的两个或多个数组。

numpy的 unique 函数用于去除数组中的重复元素,返回一个新数组。

unique 函数还能返回重复元素的索引、计数等信息,可去查文档自定义参数。

numpy文档

菜鸟教程

❻ Python基础 numpy中的常见函数有哪些

有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。

数组常用函数
1.where()按条件返回数组的索引值
2.take(a,index)从数组a中按照索引index取值
3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个
4.a.fill()将数组的所有元素以指定的值填充
5.diff(a)返回数组a相邻元素的差值构成的数组
6.sign(a)返回数组a的每个元素的正负符号
7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引

改变数组维度
a.ravel(),a.flatten():将数组a展平成一维数组
a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组
a.transpose,a.T转置数组a

数组组合
1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合
2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合
3.row_stack((a,b))将数组a,b按行方向组合
4.column_stack((a,b))将数组a,b按列方向组合

数组分割
1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组
2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组

数组修剪和压缩
1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m
2.a.compress()返回根据给定条件筛选后的数组

数组属性
1.a.dtype数组a的数据类型
2.a.shape数组a的维度
3.a.ndim数组a的维数
4.a.size数组a所含元素的总个数
5.a.itemsize数组a的元素在内存中所占的字节数
6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型

数组计算
1.average(a,weights=v)对数组a以权重v进行加权平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差
3.a.prod()数组a的所有元素的乘积
4.a.cumprod()数组a的元素的累积乘积
5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数
6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和

以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。

阅读全文

与pythonnumpy遍历相关的资料

热点内容
什么型号的板子能上服务器内存 浏览:397
androidapk图标设置 浏览:42
最早提出分数运算法的着作 浏览:922
安卓邮箱怎么保存照片 浏览:269
hdfspythonapi 浏览:851
qt如何搭建web服务器 浏览:58
程序员红包算法 浏览:792
亚马逊安全的更换云服务器 浏览:728
服务器线程数怎么设置 浏览:605
考研词汇红宝书2019pdf 浏览:981
如何利用安卓手机wifi修改密码 浏览:373
辞海分册pdf 浏览:935
安卓系统页面怎么调 浏览:775
压缩文件的用法 浏览:34
如何用浏览器访问服务器地址 浏览:207
soft编译器 浏览:113
三轴车床的编程指令 浏览:71
天生敏感pdf 浏览:565
西瓜星球服务器怎么刷钻石 浏览:838
php生成chm 浏览:658