导航:首页 > 编程语言 > python天气预报并保存

python天气预报并保存

发布时间:2023-08-22 02:03:55

python怎么在天气数据中筛选最高气温大于10度的日期

python在天气数据中筛选最高气温大于10度的日期步骤如下。
1、在命令行中直接使用pip进行模块安装。
2、利用select语句找到网页中天气数据所在的div即可。

Ⅱ 如何使用python利用api获取天气预报

试试这个:http://wthrcdn.etouch.cn/weather_mini?citykey=101210101
返回的数据是经过gzip压缩的,如果你用urllib,需要先把获取的二进制数据解压,再解码成字符串。用requests库就方便多了,包括编码都帮你自动解决,不需要自己操心。
顺便推荐Chrome的JSON-Handle插件,查看JSON非常方便。

Ⅲ Python气象数据处理与绘图(12):轨迹(台风路径,寒潮路径,水汽轨迹)绘制

寒潮是笔者主要的研究方向,寒潮路径作为寒潮重要的特征,是寒潮预报的重点之一,同样的道理也适用在台风研究以及降水的水汽来源研究中。关于路径的计算以及获取方法(比如轨迹倒推,模型追踪等等方法,台风有自己现成的数据集,比如ibtracs数据集等等)并不在本文的介绍范围之内,本文主要介绍在获取了相应的路径坐标后,如何在图中美观的展现。

上图展现了近40年东北亚区域的冬季冷空气活动路径,绘制这类图需要的数据只需为每条路径的N个三维坐标点,第一第二维分别为longitude和latitudee,第三维则比较随意,根据需要选择,比如说需要体现高度,那就用高度坐标,需要体现冷空气强度,那就用温度数据,水汽可以用相对湿度,台风也可以用速度等等。
通常此类数据是由.txt(.csv)等格式存储的,读取和处理方法可参考我的“Python气象数据处理与绘图(1):数据读取”,本文主要介绍绘图部分。

当然根据需要,也可以直接绘制两维的轨迹,即取消掉颜色数组,用最简单的plot语句,循环绘制即可。

有一个陷阱需要大家注意的是,当轨迹跨越了东西半球时,即穿越了0°或者360°经线时,它的连接方式是反向绕一圈,比如下图所示,你想要蓝色的轨迹,然而很有可能得到绿色的,这是因为你的网格数组的边界是断点,系统不会自动识别最短路径,只会在数组中直接想连,因为这不是循环数组。

我目前的解决办法是这样的:如果你的数据是0°-360°格式,那么变为-180°-180°的格式,反之相互转换。但是如果你的数据两种都出现了断点,也就是绕了地球一圈多,那无论怎样都么得办法了,我目前的思路是将数据转换成极坐标数据格式,理论上是可行的,CARTOPY的绘图也是支持极坐标数据的,具体实施还需要再试试。

Ⅳ python怎么打开 gfs气象数据

参考
http://www.jb51.net/article/48299.htm

Ⅳ python气象绘图windrose

#导入包

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

from matplotlib.ticker import FuncFormatter

import matplotlib as mpl

mpl.rcParams['font.sans-serif'] = ['SimHei']  #设置简黑字体

mpl.rcParams['axes.unicode_minus'] = False  #设置负号正常显示

#----获取数据DataFrames,index*columns。index表示不同值范围,columns表示十六个风向

data = pd.DataFrame(wind_d_max_num_per,

                    index=['<15', '15~25', '25~35', '35~45',"≥45"],

                    columns='N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW'.split())

N = 16 # 风速分布为16个方向

theta = np.linspace(0, 2*np.pi, N, endpoint=False) # 获取16个方向的如手角度值

width = np.pi / 4 * 0.4  # 绘制扇型的宽度,可以自行调整0.5时是360,充满,有间隔的话小于0.5即可

labels = list(data.columns) # 自定义坐标标签为 N , NSN, …渣笑嫌…# 开始绘图

plt.figure(figsize=(6,6),dpi=600)

ax = plt.subplot(111, projection='polar')

#----自定义颜色

mycolor =['cornflowerblue','orange','mediumseagreen','lightcoral','cyan']

#----循环画风玫瑰图

i=0

for idx in data.index:

    print(idx)

    # 每一行绘制一个扇形

    radii = data.loc[idx] # 每一行数据

    if i == 0:

        ax.bar(theta, radii, width=width, bottom=0.0, label=idx, tick_label=labels,

          color=mycolor[i])

    else:

        ax.bar(theta, radii, width=width, bottom=np.sum(data.loc[data.index[0:i]]), label=idx, tick_label=labels,

          color=mycolor[i])

    i=i+1

#此种画法,注意bottom设置,第一个bottom为0,后续bottom需要在前一个基础上增加。

ax.set_xticks(theta)

ax.set_xticklabels(labels,fontdict={'weight':'bold','size':15,'color':'k'})

ax.set_theta_zero_location('N') #设置零度方向北

ax.set_theta_direction(-1)    # 逆时针方向绘图

#----设置y坐标轴以百分升则数显示

plt.gca().yaxis.set_major_formatter(FuncFormatter(lambda s, position: '{:.0f}%'.format(100*s)))

plt.legend(loc=4, bbox_to_anchor=(0.05, -0.25),fontsize=12) # 将label显示出来, 并调整位置

#----保存图片

plt.savefig("./windrose1.svg")

Ⅵ 114 11 个案例掌握 Python 数据可视化--美国气候研究

自哥本哈根气候会议之后,全球日益关注气候变化和温室效应等问题,并于会后建立了全球碳交易市场,分阶段分批次减碳。本实验获取了美国 1979 - 2011 年间 NASA 等机构对美国各地日均最高气温、降雨量等数据,研究及可视化了气候相关指标的变化规律及相互关系。
输入并执行魔法命令 %matplotlib inline, 并去除图例边框。

数据集介绍:
本数据集特征包括美国 49 个州(State),各州所在的地区(Region),统计年(Year),统计月(Month),平均光照(Avg Daily Sunlight),日均最大空气温度(Avg Daily Max Air Temperature ),日均最大热指数(Avg Daily Max Heat Index ),日均降雨量(Avg Daily Precipitation ),日均地表温度(Avg Day Land Surface Temperature)。
各特征的年度区间为:

导入数据并查看前 5 行。

筛选美国各大区域的主要气候指数,通过 sns.distplot 接口绘制指数的分布图。

从运行结果可知:
光照能量密度(Sunlight),美国全境各地区分布趋势大致相同,均存在较为明显的两个峰(强光照和弱光照)。这是因为非赤道国家受地球公转影响,四季光照强度会呈现出一定的周期变化规律;
从地理区位能看出,东北部光照低谷明显低于其他三个区域;
日均最高空气温度(Max Air Temperature),美国全境各地区表现出较大差异,东北部和中西部趋势大致相同,气温平缓期较长,且包含一个显着的尖峰;西部地区平缓期最长,全年最高温均相对稳定;南部分布则相对更为集中;
日均地表温度(Land Surface Temperature),与最高空气温度类似,不同之处在于其低温区分布更少;
最大热指数(Max Heat Index),西部与中西部分布较为一致,偏温和性温度,东北部热指数偏高,南部偏低;
降雨量(Precipitation),西部明显偏小,南部与东北部大致相同,中西部相对较多。

结合地理知识做一个总结:
东北部及大多数中西部地区,属于温带大陆性气候,四季分明,夏季闷热,降雨较多。
西部属于温带地中海气候,全年气候温和,并且干燥少雨,夏季气候温和,最高温度相对稳定。
南部沿海一带,终年气候温暖,夏季炎热,雨水充沛。

按月计算美国各地区降雨量均值及标准偏差,以均值 ± 一倍标准偏差绘制各地区降雨量误差线图。

从运行结果可知:
在大多数夏季月份,西部地区降雨量远小于其他地区;
西部地区冬季月降雨量高于夏季月;
中西部地区是较为典型的温带大陆性气候,秋冬降雨逐渐减少,春夏降雨逐渐升高;
南部地区偏向海洋性气候,全年降雨量相对平均。

需要安装joypy包。

日均最高气温变化趋势
通过 joypy 包的 joyplot 接口,可以绘制带堆积效应的直方分布曲线,将 1980 年 - 2008 年的日均最高温度按每隔 4 年的方式绘制其分布图,并标注 25%、75% 分位数。

从运行结果可知:
1980 - 2008 年区间,美国全境日均最高温度分布的低温区正逐渐升高,同时高温区正逐渐降低,分布更趋向于集中;
1980 - 2008 年区间,美国全境日均最高温度的 25% 分位数和 75% 分位数有少量偏离但并不明显。
日均降雨量变化趋势
同样的方式对降雨量数据进行处理并查看输出结果。

筛选出加州和纽约州的日均降雨量数据,通过 plt.hist 接口绘制降雨量各月的分布图。

从运行结果可知:
加州地区降雨量多集中在 0 - 1 mm 区间,很少出现大雨,相比而言,纽约州则显得雨量充沛,日均降雨量分布在 2 - 4 mm 区间。

直方图在堆积效应下会被覆盖大多数细节,同时表达聚合、离散效应的箱线图在此类问题上或许是更好的选择。
通过 sns.boxplot 接口绘制加州和纽约州全年各月降雨量分布箱线图.

从箱线图上,我们可以清晰地对比每个月两个州的降雨量分布,既可以看到集中程度,例如七月的加州降雨量集中在 0.1 - 0.5 mm 的窄区间,说明此时很少会有大雨;又可以看到离散情况,例如一月的加州,箱线图箱子(box)部分分布较宽,且上方 10 mm 左右存在一个离散点,说明此时的加州可能偶尔地会出现大到暴雨。

视觉上更为美观且简约的是摆动的误差线图,实验 “美国全境降雨量月度分布” 将所有类别标签的 x 位置均放于同一处,导致误差线高度重合。可通过调节 x 坐标位置将需要对比的序列紧凑排布。

从输出结果可以看出,加州冬季的降雨量不确定更强,每年的的十一月至次年的三月,存在降雨量大,且降雨量存在忽多忽少的现象(误差线长)。

上面的实验均在研究单变量的分布,但经常性地,我们希望知道任意两个变量的联合分布有怎样的特征。
核密度估计 , 是研究此类问题的主要方式之一, sns.kdeplot 接口通过高斯核函数计算两变量的核密度函数并以等高线的形式绘制核密度。

从运行结果可知:
加州在高温区和低降雨期存在一个较为明显的高密度分布区(高温少雨的夏季);
纽约州在高温及低温区均存在一个高密度的分布区,且在不同温区降雨量分布都较为均匀。

将美国全境的降雨量与空气温度通过 plt.hist2d 接口可视化。

从运行结果可知:
美国全境最高密度的日均高温温度区域和降雨量区间分别为,78 F (约等于 25 C)和 2.2 mm 左右,属于相对舒适的生活气候区间。
美国全境降雨量与空气温度的关系-核密度估计
在上面实验基础上,在 x, y 轴上分别通过 sns.rugplot 接口绘制核密度估计的一维分布图,可在一张绘图平面上同时获取联合分布和单变量分布的特征。

美国全境降雨量与空气温度的关系-散点分布和直方分布
sns.jointplot 接口通过栅格的形式,将单变量分布用子图的形式进行分别绘制,同时通过散点图进行双变量关系的展示,也是一种较好的展现数据分布的方式。

上面两个实验研究了双变量分布的可视化,以下研究 3 变量聚合结果的可视化。
通过 sns.heatmap 接口可实现对透视数据的可视化,其原理是对透视结果的值赋予不同的颜色块,以可视化其值的大小,并通过颜色条工具量化其值大小。

上面的两个实验可视化了各州随年份日均最高温度的中位数变化趋势,从图中并未看出有较为显着地变化。
以下通过 t 检验的方式查看统计量是否有显着性差异。stats.ttest_ind 接口可以输出 1980 年 与 2010 年主要气候指数的显着性检验统计量及 p 值。

从运行结果可以看出:
检验结果拒绝了降雨量相等的原假设,即 1980 年 与 2010 年两年间,美国降雨量是不同的,同时没有拒绝日均日照、日均最大气温两个变量相等的原假设,说明气温未发生显着性变化。

Ⅶ 用python获取天气预报的代码出错了,求解

前面的回答也足够简明了。

首先,找出出问题的代码行数。

其次,找出出问题的变量。

你 print(type(变量名))你就可以发现该变量是 str字符串类型的,无法参与计算,所以你应该将它转换成数值类型的,一般都用 float(变量名)来转换,改完那一行报错的行,就基本不用改别的了。


个人建议:

1. 你的 Python基础似乎有些薄弱,最好好好学习一下基础。其他模块都需要这个基础才能更好使用。

2.或许你可以看看 pandas。有时候做数据分析用 pandas可以节省很多代码,特别对于刚学习 python的人来说,或许更加容易接受 pandas的特有语法。


财富值如果有的话应该给上面那个回答问题的人。因为他的答案是正确的。

阅读全文

与python天气预报并保存相关的资料

热点内容
linux内核编译视频教程 浏览:881
程序员厚黑 浏览:187
如何在闲鱼淘二手安卓机 浏览:175
怎么下载晨星app 浏览:132
两台服务器如何同步内容 浏览:808
服务器共用一个ip有什么坏处 浏览:461
go加密exe 浏览:606
pdf改分栏 浏览:123
python执行怎么写 浏览:766
遇见她app怎么加好友 浏览:548
手机怎么设置app强制提醒 浏览:77
怎样不用海绵做解压玩具 浏览:81
为什么远程服务器复制不了文件 浏览:715
打开app闪退怎么回事 浏览:752
bcrpt加密原理 浏览:401
女程序员写的小说 浏览:774
华为路由器ip设置命令 浏览:552
如何打开软件服务器 浏览:756
单片机接口技术及应用 浏览:751
linux下执行脚本文件 浏览:127