㈠ python如何产生随机矩阵
importrandom
x=[]
precision=10000.0
foriinxrange(25):
y=[]
forjinxrange(401):
y.append(random.randint(-0.12*precision,0.12*precision)/precision)
x.append(y)
printx
#xiswhatyouwant
精度可以调整precision
学python可以看看我在云课堂开的课程,用python做些事
㈡ python中随机生成10-99的整数,构成一个5×5的矩阵,显示完整矩阵,并将矩阵转置后显示出来
使用numpy 简单的很
importnumpyasnp
importrandom
before=np.array([[random.randint(10,99)foriinrange(5)]forjinrange(5)])
result=before.T
print(result)
㈢ python怎样生成一个随机矩阵
importrandom#导入随机数模块
m=10
n=10
matrix=[[0foriinrange(m)]foriinrange(n)]#定义数组
forrowinrange(0,m):
forcolinrange(0,n):
matrix[row].append(random.randint(0,101))#赋值
forrowinrange(0,m):
printmatrix[row]#打印
㈣ 数据蛙-Python进阶
这是漫长的一周,本周完成了Python的进阶模块,主要是pandas、numpy、matplotlib、seaborn、pyecharts这些模块的学习以及一个实际的案例:商品销售情况分析,之前一直觉得课程难度不够,但到这一周难度就大大提高了。尤其是案例练习中的RFM模型和用户生命周期建立,看懂不难但是自差首己写一直出错,在不断出错不断尝试中知识得到了积累,另外可视化部分没有什么练习题,希望后面可以加上一些这方面的练习,接下来分模块来总结一下学习的内容。
重新设置索引:df.set_index()
Series格式转换为DataFrame:df.to_frame()
文件读取:pd.read_csv(filepath, header = 0,skiprows=[1,2])
使用位禅庆源置做索引:df.loc[0] 使用列表做索引:df.loc[[0,1,2]]
使用切片做索引:df.loc[0:4] 使用bool类型索引:df[df['年龄']>30]
loc 是基于索引值的,切片是左闭右闭的
iloc 是基于位置的,切片是左闭右开的
修改列索引:df.rename(columns={'姓名':'name', '年龄':'age'},inplace=True)
替换一个值:df.replace({'name':{'小明':'xiaoming'}},inplace=True)
对数据进行排序:df.sort_values('age')
累加求和:df.cumsum(0)
删除列:del df['player'] 删除行:df.drop(labels=0) labels 是行列的名字
数据拼接:pd.concat([left,right],axis=1)
# 指定列进行关联,默认是 inner join result = pd.merge(left,right,on='key')
#多个关联条件:result = pd.merge(left, right, on=['key1', 'key2'])
#左连接:result = pd.merge(left, right, how='left', on=['key1', 'key2'])
# 列名不一样的关联:pd.merge(left,right,left_on = ['key1','key2'],right_on = ['key3','key4'])
#单个分组:groups = df.groupby('district')
# 作用多个聚合函数:groups.agg([np.mean,np.sum,np.std])
# 针对具体列聚合 groups.age.agg([np.mean,np.sum,np.std])
# 不同列不同聚合函数 groups.agg({"age":np.mean,"novip_buy_times":np.sum})
分组后该列值求和显示:groups['vip_buy_times'].transform('sum')
通常用于求占比:transform(lambda x: x /sum(x))
# 填充指定值:np.full([3,4],1)
# 起始为10,5为步长,30为结贺态尾取不到:np.arange(10, 30, 5)
#随机矩阵:np.random.random((2,3))
# 平均划分:np.linspace( 0, 2*pi, 100 )
# 类型及转换:vector.astype('float')
# 多维变一维:matrix.ravel()
# 矩阵的扩展:a = np.arange(0, 40, 10) b = np.tile(a, (3, 5)) # 行变成3倍,列变成5倍
# 水平拼接:np.hstack((a,b)) 竖直拼接:np.vstack((a,b))
# 竖直分割:np.hsplit(a,3) #水平分割:np.vsplit(a,3)
8. Select the data in rows [3, 4, 8] and in columns ['animal', 'age'].
A:df.loc[df.index[[3,4,8]],['animal','age']]
行采用位置,列采用普通索引,这里利用index函数将位置变化为具体的普通索引,再利用loc函数
19. The 'priority' column contains the values 'yes' and 'no'. Replace this column with a column of boolean values: 'yes' should be True and 'no' should be False
A1:df['priority'].replace(['yes','no'],[True,False],inplace=True) 用replace函数替换
A2:df['priority'] = df['priority'].map({'yes': True, 'no': False}) 用map函数替换
最大最小值的索引:df.idxmax、df.idxmin
找出最大最小的前N个数:nlargest()和nsmallest()
将原表分组 并设置分段区间 pd.cut(df['A'], np.arange(0, 101, 10))
resample函数 日期重采样:s.resample('M').mean()
TimeGrouper 重组:s.groupby(pd.TimeGrouper('4M')).idxmax()
split 分割函数:temp = df['From_To'].str.split('_', expand=True) True为DataFrame
两个DataFrame拼接用join:df = df.join(temp)
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
%matplotlib inline 直接显示
折线图:plt.plot(x,y,color = 'r')
柱状图:plt.bar(x,y) plt.barh(x,y) 多个bar x设置不同 堆积图 bottom设置不同
散点图:plt.scatter(x, y, c=colors, alpha=0.5, s = area)
直方图:plt.hist(a,bins= 20) bin代表分隔的最小单位
plt.legend() 显示图例
for a,b in zip(X+W[i],data[i]):
plt.text(a,b,"%.0f"% b,ha="center",va= "bottom") 添加数据标签
plt.annotate('注释文本',xy=(1, np.sin(1)),xytext=(2, 0.5), fontsize=16,arrowprops=dict(arrowstyle="->")) 添加注释文本
plt.xlabel("Group") x轴标题
plt.ylabel("Num") y轴标题
fig, axes = plt.subplots(nrows=2, ncols=2,facecolor='darkslategray') 绘制多个图形
axes[0,0] axes[0,1] axes[1,0] axes[1,1]
pylab.rcParams['figure.figsize'] = (10, 6) # 调整图片大小
动态展示图表
from pyecharts.charts import Bar
from pyecharts import options as opts
** pyecharts 绘图的五个步骤:**
创建图形对象:bar = Bar()
添加绘图数据:bar.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])
bar.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])
配置系列参数:对标签、线型等的一些设置
配置全局参数:bar.set_global_opts(title_opts=opts.TitleOpts(title="销售情况"))
渲染图片:生成本地 HTML 文件 bar.render("mycharts.html") bar.render()
notebook 渲染:bar.render_notebook()
bar = (Bar()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])
.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])
.set_global_opts(title_opts=opts.TitleOpts(title="某商场销售情况"))
)
bar.render_notebook()
柱状图:Bar()
条形图:bar.reversal_axis() #翻转XY轴,将柱状图转换为条形图
折线图:from pyecharts.charts import Line line=Line()
饼图:from pyecharts.charts import Page, Pie Pie()
转换日期类型:df['order_dt']=pd. to_datetime (df.order_dt,format="%Y%m%d")
将日期转换为月为单位:df['month']=df.order_dt.values. astype('datetime64[M]') 所有日期显示为当月第一天
去除日期单元值:order_diff/ np.timedelta64(1,'D')
过滤部分极值:grouped_user.sum() .query('order_procts<100') .order_amount
数据透视表:rfm=df.pivot_table( index ='user_id', values =['order_procts','order_amount'], aggfunc ={'order_amount':'sum','order_procts':'sum'})
map() 方法是pandas.series.map()方法, 对DF中的元素级别的操作, 可以对df的某列或某多列
applymap(func) 也是DF的属性, 对整个DF所有元素应用func操作
purchase_r=pivoted_counts.applymap(lambda x: 1 if x>1 else np.NaN if x==0 else 0)
apply(func) 是DF的属性, 对DF中的行数据或列数据应用func操作,也可用于Series
apply(lambda x:x.cumsum()/x.sum()) 累计占比
apply(lambda x:x/x.sum(),axis=0) 每一列中每行数据占比
下周开始进入数据分析思维的课程,很期待后面的课程以及项目,加油!
㈤ 如何利用Python生成行列均不重复的随机矩阵
v假如你排列的是个数组{1,2,3,4,5}
列数假如也是5
也就是5*5的矩阵
然后让5个数组都随机生成
然后排序
如果两个临近数据相同或相近
这两个数据就是挨着的好像这样:
0:{1,2,3,4,5}
1:{2,3,4,5,1}
2:{2,3,5,1,4}
3:{2,3,5,1,4}
4:{2,3,5,4,1}
那么生成完之后就可以经过一次遍历
把邻近两个进行比较
如果相同就重新生成一个
或者先标记
之后再去
㈥ python怎么输入一个由1和0组成的4×5矩阵
arr=[[a for _ in range(y)] for _ in range(x)]
x参数控制行数y参数控制列 a表示每行每列元素的初始值
如四行五列全为1参数分别为x=4y=5 a= 1,如果要随机生成1或者0
修改a为random.randint(0,1)