⑴ 如何用python绘制各种图形
1.环境
系统:windows10
python版本:python3.6.1
使用的库:matplotlib,numpy
2.numpy库产生随机数几种方法
import numpy as np
numpy.random
rand(d0,d1,...,dn)
In [2]: x=np.random.rand(2,5)
In [3]: x
Out[3]:
array([[ 0.84286554, 0.50007593, 0.66500549, 0.97387807, 0.03993009],
[ 0.46391661, 0.50717355, 0.21527461, 0.92692517, 0.2567891 ]])
randn(d0,d1,...,dn)查询结果为标准正态分布
In [4]: x=np.random.randn(2,5)
In [5]: x
Out[5]:
array([[-0.77195196, 0.26651203, -0.35045793, -0.0210377 , 0.89749635],
[-0.20229338, 1.44852833, -0.10858996, -1.65034606, -0.39793635]])
randint(low,high,size)
生成low到high之间(半开区间 [low, high)),size个数据
In [6]: x=np.random.randint(1,8,4)
In [7]: x
Out[7]: array([4, 4, 2, 7])
random_integers(low,high,size)
生成low到high之间(闭区间 [low, high)),size个数据
In [10]: x=np.random.random_integers(2,10,5)
In [11]: x
Out[11]: array([7, 4, 5, 4, 2])
3.散点图
x x轴
y y轴
s 圆点面积
c 颜色
marker 圆点形状
alpha 圆点透明度#其他图也类似这种配置
N=50# height=np.random.randint(150,180,20)# weight=np.random.randint(80,150,20)
x=np.random.randn(N)
y=np.random.randn(N)
plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)
plt.show()
8.箱型图
import matplotlib.pyplot as pltimport numpy as npdata=np.random.normal(loc=0,scale=1,size=1000)#sym 点的形状,whis虚线的长度plt.boxplot(data,sym="o",whis=1.5)plt.show()
#sym 点的形状,whis虚线的长度
⑵ 如何用Python绘制Circos图
用Python实现Circos图的绘制在线绘制的Circos有一定局限性,如对数据的要求、个性化的局限和处理速度等的问题,但如果你是一个Pythoneer或者喜欢用更加Pythonic的方式来个性化地绘制Circos图,那么今天就跟随我一起用代码实现这一目标吧!
安装Circos包
首先,登录Python的包索引网站PythonPackageIndex(PyPI,正确读音是:PiePeeAi),找到Circos包的下载页:
https://pypi.python.org/pypi/Circos/1.3.5
该包/模块的作者是我的好友EricMa。你可以选择下载wheeler文件,然后本地安装。也可以在shell下直接通过pip进行安装:
pipinstallcircos
注意,所支持的Python版本必须是3.x,对2不支持。
选择数据
当安装了circos包后,我们就可以直接应用这个包来写代码了。为了演示方便,我需要应用一些数据。作为内科医师,就让我来展示一下老本行:处理药物与肝酶细胞色素P450的相互关系的可视化。由于是为了抛砖引玉,所以绘制出的Circos图相对简单。
我们先从美国FDA官网下载不同细胞色素相关的各种口服药物表。共202种常用的口服药物,涵盖内科学、肿瘤学、神经科和心理学等学科。数据文件如下:
可以看到这个数据的结构:是按肝细胞色素酶进行分类,共分8个列。这8个细胞色素酶分别是:CYP1A2,CYP2B6,CYP2C8,CYP2C9,CYP2C19,CYP2D6,CYP2E1和CYP3A4。我们将要建立各个口服药与这些肝酶之间关系的Circos图,从而了解通过相同肝酶代谢或转化的药物之间是否存在相互作用。
导入各个模块和读入数据
导入各个模块:
fromcircosimportCircosPlot
importxlrd
importpandasaspd
importnumpyasnp
读入文件:
filename='.\MedicationInteraction.xlsx'
book=xlrd.open_workbook(filename)
print('Fileloaded!')
提取数据:
nrows=book.sheet_by_name('Sheet1').nrows
header=book.sheet_by_name('Sheet1').row_values(0)
data=[book.sheet_by_name('Sheet1').row_values(i)foriinrange(1,nrows)]
df=pd.DataFrame(data,columns=header)
df[df=='']=np.nan
读取后,药物和酶的数据为pandas的DataFrame数据结构,细胞色素P450酶的名字为columns的名字。我们可以检查一下数据:
修数据,尤其是处理NA数据
df_dict={}
foriinrange(len(df.columns)):
df_dict[df.icol(i).name]=list(df.icol(i).dropna())
节点和连线
创建节点(nodes)数据,在我这个例子里就是各个药物和肝酶:
nodes=[]
forkeyindf_dict.keys():
nodes.extend(df_dict[key])
nodes=list(nodes)
headers=list(df.columns)
enzymes=['0']*5
forheaderinheaders:
enzymes.append(header)
enzymes.extend(['0']*5)
nodes.extend(enzymes)
创建连线(edges)数据,我们应用tuple(元组)这个数据结构来表示药物与特定肝酶之间的关系:
edges_origin=[]
forkeyindf_dict.keys():
forvalueindf_dict[key]:
edges_origin.append((key,value))
绘图
绘制Circos图:
c=CircosPlot(nodes,edges_origin,radius=10,
nodecolor="blue",
edgecolor="red",
)
c.draw()
得到了下面这张所有药物与肝酶之间的图:
左上方是8个肝脏细胞色素P450酶(CYP1A2、CYP2B6、CYP2C8、CYP2C9、CYP2C19、CYP2D6、CYP2E1和CYP3A4)。其它点即为202种口服药物。每种药物都与参与代谢和转化它的P450酶相连。与相同酶连接的不同药物,理论上应该都存在相互作用,但具体如何还要看与酶的作用机理。
个性化绘图
如果我们打算分别可视化出不同肝酶的关系图形,我们只需改变连线信息,即edges信息:
edges=[]
‍forvalueindf_dict['CYP2B6']:
edges.append(('CYP2B6',value))
c=CircosPlot(nodes,edges,radius=10,
nodecolor="orange",
edgecolor="orange",
)
c.draw()
从而我们得到了各种肝酶所代谢和转化药物的图形
用PS将它们合并:
相同肝酶所代谢和转化的药物用相同颜色的edges表示。
显示特定药物
最后,我们可以挑选其中一些感兴趣的药物来进行观察,例如,我从这202个药物中指定几个我感兴趣的药物:
propafenone(心律平),acetaminophen(对乙酰氨基酚),paclitaxel(紫杉醇),ibuprofen(布洛芬),losartan(洛沙坦),omeprazole(奥美拉唑),carvediolo(卡维地洛),codeine(可待因),theophylline(茶碱),quinidine(奎尼丁),verapamil(异搏定),lovastatin(洛伐他汀),nitrendipine(尼群地平)
然后重新建立edges:
medications=['propafenone','acetaminophen','paclitaxel','ibuprofen','losartan','omeprazole','carvedilol','codeine','theophylline','quinidine','verapamil','lovastatin','nitrendipine']
edges_candidate=set()
formedicationinmedications:
foredgeinedges_origin:
ifmedication==edge[1]:
edges_candidate.add(edge)
edges_candidate=list(edges_candidate)
然后再绘图:
c=CircosPlot(nodes,edges_candidate,radius=10,
nodecolor="black",
edgecolor="black",
)
c.draw()
从而得到这张图。
⑶ 统计学入门级:常见概率分布+python绘制分布图
如果随机变量X的所有取值都可以逐个列举出来,则称X为离散型随机变量。相应的概率分布有二项分布,泊松分布。
如果随机变量X的所有取值无法逐个列举出来,而是取数轴上某一区间内的任一点,则称X为连续型随机变量。相应的概率分布有正态分布,均匀分布,指数分布,伽马分布,偏态分布,卡方分布,beta分布等。(真多分布,好恐怖~~)
在离散型随机变量X的一切可能值中,各可能值与其对应概率的乘积之和称为该随机变量X的期望值,记作E(X) 。比如有随机变量,取值依次为:2,2,2,4,5。求其平均值:(2+2+2+4+5)/5 = 3。
期望值也就是该随机变量总体的均值。 推导过程如下:
= (2+2+2+4+5)/5
= 1/5 2 3 + 4/5 + 5/5
= 3/5 2 + 1/5 4 + 1/5 5
= 0.6 2 + 0.2 4 + 0.2 5
= 60% 2 + 20% 4 + 20%*5
= 1.2 + 0.8 + 1
= 3
倒数第三步可以解释为值为2的数字出现的概率为60%,4的概率为20%,5的概率为20%。 所以E(X) = 60% 2 + 20% 4 + 20%*5 = μ = 3。
0-1分布(两点分布),它的随机变量的取值为1或0。即离散型随机变量X的概率分布为:P{X=0} = 1-p, P{X=1} = p,即:
则称随机变量X服从参数为p的0-1分布,记作X~B(1,p)。
在生活中有很多例子服从两点分布,比如投资是否中标,新生婴儿是男孩还是女孩,检查产品是否合格等等。
大家非常熟悉的抛硬币试验对应的分布就是二项分布。抛硬币试验要么出现正面,要么就是反面,只包含这两个结果。出现正面的次数是一个随机变量,这种随机变量所服从的概率分布通常称为 二项分布 。
像抛硬币这类试验所具有的共同性质总结如下:(以抛硬币为例)
通常称具有上述特征的n次重复独立试验为n重伯努利试验。简称伯努利试验或伯努利试验概型。特别地,当试验次数为1时,二项分布服从0-1分布(两点分布)。
举个栗子:抛3次均匀的硬币,求结果出现有2个正面的概率 。
已知p = 0.5 (出现正面的概率) ,n = 3 ,k = 2
所以抛3次均匀的硬币,求结果出现有2个正面的概率为3/8。
二项分布的期望值和方差 分别为:
泊松分布是用来描述在一 指定时间范围内或在指定的面积或体积之内某一事件出现的次数的分布 。生活中服从泊松分布的例子比如有每天房产中介接待的客户数,某微博每月出现服务器瘫痪的次数等等。 泊松分布的公式为 :
其中 λ 为给定的时间间隔内事件的平均数,λ = np。e为一个数学常数,一个无限不循环小数,其值约为2.71828。
泊松分布的期望值和方差 分别为:
使用Python绘制泊松分布的概率分布图:
因为连续型随机变量可以取某一区间或整个实数轴上的任意一个值,所以通常用一个函数f(x)来表示连续型随机变量,而f(x)就称为 概率密度函数 。
概率密度函数f(x)具有如下性质 :
需要注意的是,f(x)不是一个概率,即f(x) ≠ P(X = x) 。在连续分布的情况下,随机变量X在a与b之间的概率可以写成:
正态分布(或高斯分布)是连续型随机变量的最重要也是最常见的分布,比如学生的考试成绩就呈现出正态分布的特征,大部分成绩集中在某个范围(比如60-80分),很小一部分往两端倾斜(比如50分以下和90多分以上)。还有人的身高等等。
正态分布的定义 :
如果随机变量X的概率密度为( -∞<x<+∞):
则称X服从正态分布,记作X~N(μ,σ²)。其中-∞<μ<+∞,σ>0, μ为随机变量X的均值,σ为随机变量X的标准差。 正态分布的分布函数
正态分布的图形特点 :
使用Python绘制正态分布的概率分布图:
正态分布有一个3σ准则,即数值分布在(μ-σ,μ+σ)中的概率为0.6827,分布在(μ-2σ,μ+2σ)中的概率为0.9545,分布在(μ-3σ,μ+3σ)中的概率为0.9973,也就是说大部分数值是分布在(μ-3σ,μ+3σ)区间内,超出这个范围的可能性很小很小,仅占不到0.3%,属于极个别的小概率事件,所以3σ准则可以用来检测异常值。
当μ=0,σ=1时,有
此时的正态分布N(0,1) 称为标准正态分布。因为μ,σ都是确定的取值,所以其对应的概率密度曲线是一条 形态固定 的曲线。
对标准正态分布,通常用φ(x)表示概率密度函数,用Φ(x)表示分布函数:
假设有一次物理考试特别难,满分100分,全班只有大概20个人及格。与此同时语文考试很简单,全班绝大部分都考了90分以上。小明的物理和语文分别考了60分和80分,他回家后告诉家长,这时家长能仅仅从两科科目的分值直接判断出这次小明的语文成绩要比物理好很多吗?如果不能,应该如何判断呢?此时Z-score就派上用场了。 Z-Score的计算定义 :
即 将随机变量X先减去总体样本均值,再除以总体样本标准差就得到标准分数啦。如果X低于平均值,则Z为负数,反之为正数 。通过计算标准分数,可以将任何一个一般的正态分布转化为标准正态分布。
小明家长从老师那得知物理的全班平均成绩为40分,标准差为10,而语文的平均成绩为92分,标准差为4。分别计算两科成绩的标准分数:
物理:标准分数 = (60-40)/10 = 2
语文:标准分数 = (85-95)/4 = -2.5
从计算结果来看,说明这次考试小明的物理成绩在全部同学中算是考得很不错的,而语文考得很差。
指数分布可能容易和前面的泊松分布混淆,泊松分布强调的是某段时间内随机事件发生的次数的概率分布,而指数分布说的是 随机事件发生的时间间隔 的概率分布。比如一班地铁进站的间隔时间。如果随机变量X的概率密度为:
则称X服从指数分布,其中的参数λ>0。 对应的分布函数 为:
均匀分布的期望值和方差 分别为:
使用Python绘制指数分布的概率分布图:
均匀分布有两种,分为 离散型均匀分布和连续型均匀分布 。其中离散型均匀分布最常见的例子就是抛掷骰子啦。抛掷骰子出现的点数就是一个离散型随机变量,点数可能有1,2,3,4,5,6。每个数出现的概率都是1/6。
设连续型随机变量X具有概率密度函数:
则称X服从区间(a,b)上的均匀分布。X在等长度的子区间内取值的概率相同。对应的分布函数为:
f(x)和F(x)的图形分别如下图所示:
均匀分布的期望值和方差 分别为:
⑷ 花了2万多买的Python70个项目,现在分享给大家,练手进厂靠它了
前言:
不管学习哪门语言都希望能做出实际的东西来,这个实际的东西当然就是项目啦,不用多说大家都知道学编程语言一定要做项目才行。
这里整理了70个Python实战项目列表,都有完整且详细的教程,你可以从中选择自己想做的项目进行参考学习练手,你也可以从中寻找灵感去做自己的项目。
1、【Python 图片转字符画】
2、【200行Python代码实现2048】
3、【Python3 实现火车票查询工具】
4、【高德API+Python解决租房问题 】
5、【Python3 色情图片识别】
6、【Python 破解验证码】
7、【Python实现简单的Web服务器】
8、【pygame开发打飞机 游戏 】
9、【Django 搭建简易博客】
10、【Python基于共现提取《釜山行》人物关系】
11、【基于scrapy爬虫的天气数据采集(python)】
12、【Flask 开发轻博客】
13、【Python3 图片隐写术】
14、【Python 实现简易 Shell】
15、【使用 Python 解数学方程】
16、【PyQt 实现简易浏览器】
17、【神经网络实现手写字符识别系统 】
18、【Python 实现简单画板】
19、【Python实现3D建模工具】
20、【NBA常规赛结果预测——利用Python进行比赛数据分析】
21、【神经网络实现人脸识别任务】
22、【Python文本解析器】
23、【Python3 & OpenCV 视频转字符动画】
24、【Python3 实现淘女郎照片爬虫 】
25、【Python3实现简单的FTP认证服务器】
26、【基于 Flask 与 MySQL 实现番剧推荐系统】
27、【Python 实现端口扫描器】
28、【使用 Python 3 编写系列实用脚本】
29、【Python 实现康威生命 游戏 】
30、【川普撞脸希拉里(基于 OpenCV 的面部特征交换) 】
31、【Python 3 实现 Markdown 解析器】
32、【Python 气象数据分析 -- 《Python 数据分析实战》】
33、【Python实现键值数据库】
34、【k-近邻算法实现手写数字识别系统】
35、【ebay在线拍卖数据分析】
36、【Python 实现英文新闻摘要自动提取 】
37、【Python实现简易局域网视频聊天工具】
38、【基于 Flask 及爬虫实现微信 娱乐 机器人】
39、【Python实现Python解释器】
40、【Python3基于Scapy实现DDos】
41、【Python 实现密码强度检测器】
42、【使用 Python 实现深度神经网络】
43、【Python实现从excel读取数据并绘制成精美图像】
44、【人机对战初体验:Python基于Pygame实现四子棋 游戏 】
45、【Python3 实现可控制肉鸡的反向Shell】
46、【Python打造漏洞扫描器 】
47、【Python应用马尔可夫链算法实现随机文本生成】
48、【数独 游戏 的Python实现与破解】
49、【使用Python定制词云】
50、【Python开发简单计算器】
51、【Python 实现 FTP 弱口令扫描器】
52、【Python实现Huffman编码解压缩文件】
53、【Python实现Zip文件的暴力破解 】
54、【Python3 智能裁切图片】
55、【Python实现网站模拟登陆】
56、【给Python3爬虫做一个界面.妹子图网实战】
57、【Python 3 实现图片转彩色字符】
58、【自联想器的 Python 实现】
59、【Python 实现简单滤镜】
60、【Flask 实现简单聊天室】
61、【基于PyQt5 实现地图中定位相片拍摄位置】
62、【Python实现模板引擎】
63、【Python实现遗传算法求解n-queens问题】
64、【Python3 实现命令行动态进度条】
65、【Python 获取挂号信息并邮件通知】
66、【Python实现java web项目远端自动化更新部署】
67、【使用 Python3 编写 Github 自动周报生成器】
68、【使用 Python 生成分形图片】
69、【Python 实现 Redis 异步客户端】
70、【Python 实现中文错别字高亮系统】
最后:
以上项目列表希望可以给你在Python学习中带来帮助~
获取方式:转发 私信“1”
⑸ python将图像分割成两半
importos
importre
importsys
importtime
importrandom
#addsystemheadershere...
#导入cv模块
importcv2ascv
#读取图像,支持bmp、jpg、png、tiff等常用格式
height=0
length=0
key=0
picPath="E:\python3.4.0-amd\project\imageProcess\tamamo.jpg"
ifnotos.path.exists(picPath):
print("picturenotexists!exit!")
sys.exit()
srcImage=cv.imread(picPath)
ifsrcImageisNone:
print("readpicturefailed!exit!")
sys.exit()
size=srcImage.shape
height=size[0]
length=size[1]
print("srcImage:height(%u)length(%u)"%(height,length))
#显示原图
#cv.imshow("srcImage",srcImage)
#创建窗口并显示图像
mid=int(length/2)
leftImage=srcImage[0:height,0:mid]
cv.namedWindow("leftImage",cv.WINDOW_NORMAL)
cv.resizeWindow("leftImage",mid,height)
cv.imshow("leftImage",leftImage)
rightIamge=srcImage[0:height,mid:length]
cv.namedWindow("rightIamge",cv.WINDOW_NORMAL)
cv.resizeWindow("rightIamge",mid,height)
cv.imshow("rightIamge",rightIamge)
cv.waitKey(0)
#释放窗口
cv.destroyAllWindows()
⑹ python两个函数图像怎么分开画而且加表格
一、函数说明
在使用python作图源答时,应用最广的就是matplotlib包,但我们平坦裂滑时使用matplotlib时主要是画一些简单的图表,让腊很少有涉及分段函数。本次针对数值实验中两个较为复杂的函数,使用其构建分段函数图像。
二、图像代码
2.11、函数公式:
y=4sin(4πt)-sgn(t-0.3)-sgn(0.72-t)
2.12、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def sgn(x):
if x>0:
return 1
elif x<0:
return -1
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=4*np.sin(4*np.pi*i)-sgn(i-0.3)-sgn(0.72-i)
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("Heavsine")
plt.show()
2.13、运行结果如下:
.png
2.21、函数公式:
479029.html
2.22、代码如下:
import numpy as np
import matplotlib.pyplot as plt
def g(x):
if x>0:
return x
else:
return 0
t=np.arange(0,1,0.01)
y=[]
for i in t:
y_1=g(i*(1-i))*np.sin((2*np.pi*1.05)/(i+0.05))
y.append(y_1)
plt.plot(t,y)
plt.xlabel("t")
plt.ylabel("y")
plt.title("TimeSine")
plt.show()