导航:首页 > 编程语言 > python和深度学习接轨

python和深度学习接轨

发布时间:2023-09-01 18:34:33

㈠ 怎样用python实现深度学习

基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。
机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。
早在深度学习以及Tensorflow等框架流行之前,Python中即有scikit-learn,能够很方便地完成几乎所有机器学习模型,从经典数据集下载到构建模型只需要简单的几行代码。配合Pandas、matplotlib等工具,能很简单地进行调整。
而Tensorflow、PyTorch、MXNet、Keras等深度学习框架更是极大地拓展了机器学习的可能。使用Keras编写一个手写数字识别的深度学习网络仅仅需要寥寥数十行代码,即可借助底层实现,方便地调用包括GPU在内的大量资源完成工作。
值得一提的是,无论什么框架,Python只是作为前端描述用的语言,实际计算则是通过底层的C/C++实现。由于Python能很方便地引入和使用C/C++项目和库,从而实现功能和性能上的扩展,这样的大规模计算中,让开发者更关注逻辑于数据本身,而从内存分配等繁杂工作中解放出来,是Python被广泛应用到机器学习领域的重要原因。

㈡ 如何用Python一门语言通吃高性能并发,GPU计算和深度学习

一、os模块概述

Python os模块包含普遍的操作系统功能。如果你希望你的程序能够与平台无关的话,这个模块是尤为重要的。(一语中的)

二、常用方法

1、os.name

输出字符串指示正在使用的平台。如果是window 则用'nt'表示,对于Linux/Unix用户,它是'posix'。

2、os.getcwd()

函数得到当前工作目录,即当前Python脚本工作的目录路径。

3、os.listdir()

返回指定目录下的所有文件和目录名。

>>> os.listdir(os.getcwd())
['Django', 'DLLs', 'Doc', 'include', 'Lib', 'libs', 'LICENSE.txt', 'MySQL-python-wininst.log', 'NEWS.txt', 'PIL-wininst.log', 'python.exe', 'pythonw.exe', 'README.txt', 'RemoveMySQL-python.exe', 'RemovePIL.exe', 'Removesetuptools.exe', 'Scripts', 'setuptools-wininst.log', 'tcl', 'Tools', 'w9xpopen.exe']

㈢ 如何通过Python进行深度学习

作者 | Vihar Kurama

编译 | 荷叶

来源 | 云栖社区

摘要:深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。本文就用一个小例子无死角的介绍一下深度学习!

人脑模拟

深度学习背后的主要原因是人工智能应该从人脑中汲取灵感。此观点引出了“神经网络”这一术语。人脑中包含数十亿个神经元,它们之间有数万个连接。很多情况下,深度学习算法和人脑相似,因为人脑和深度学习模型都拥有大量的编译单元(神经元),这些编译单元(神经元)在独立的情况下都不太智能,但是当他们相互作用时就会变得智能。

我认为人们需要了解到深度学习正在使得很多幕后的事物变得更好。深度学习已经应用于谷歌搜索和图像搜索,你可以通过它搜索像“拥抱”这样的词语以获得相应的图像。-杰弗里·辛顿

神经元

神经网络的基本构建模块是人工神经元,它模仿了人类大脑的神经元。这些神经元是简单、强大的计算单元,拥有加权输入信号并且使用激活函数产生输出信号。这些神经元分布在神经网络的几个层中。

inputs 输入 outputs 输出 weights 权值 activation 激活

人工神经网络的工作原理是什么?

深度学习由人工神经网络构成,该网络模拟了人脑中类似的网络。当数据穿过这个人工网络时,每一层都会处理这个数据的一方面,过滤掉异常值,辨认出熟悉的实体,并产生最终输出。

输入层:该层由神经元组成,这些神经元只接收输入信息并将它传递到其他层。输入层的图层数应等于数据集里的属性或要素的数量。输出层:输出层具有预测性,其主要取决于你所构建的模型类型。隐含层:隐含层处于输入层和输出层之间,以模型类型为基础。隐含层包含大量的神经元。处于隐含层的神经元会先转化输入信息,再将它们传递出去。随着网络受训练,权重得到更新,从而使其更具前瞻性。

神经元的权重

权重是指两个神经元之间的连接的强度或幅度。你如果熟悉线性回归的话,可以将输入的权重类比为我们在回归方程中用的系数。权重通常被初始化为小的随机数值,比如数值0-1。

前馈深度网络

前馈监督神经网络曾是第一个也是最成功的学习算法。该网络也可被称为深度网络、多层感知机(MLP)或简单神经网络,并且阐明了具有单一隐含层的原始架构。每个神经元通过某个权重和另一个神经元相关联。

该网络处理向前处理输入信息,激活神经元,最终产生输出值。在此网络中,这称为前向传递。

inputlayer 输入层 hidden layer 输出层 output layer 输出层

激活函数

激活函数就是求和加权的输入到神经元的输出的映射。之所以称之为激活函数或传递函数是因为它控制着激活神经元的初始值和输出信号的强度。

用数学表示为:

我们有许多激活函数,其中使用最多的是整流线性单元函数、双曲正切函数和solfPlus函数。

激活函数的速查表如下:

反向传播

在网络中,我们将预测值与预期输出值相比较,并使用函数计算其误差。然后,这个误差会传回这个网络,每次传回一个层,权重也会根绝其导致的误差值进行更新。这个聪明的数学法是反向传播算法。这个步骤会在训练数据的所有样本中反复进行,整个训练数据集的网络更新一轮称为一个时期。一个网络可受训练数十、数百或数千个时期。

prediction error 预测误差

代价函数和梯度下降

代价函数度量了神经网络对给定的训练输入和预期输出“有多好”。该函数可能取决于权重、偏差等属性。

代价函数是单值的,并不是一个向量,因为它从整体上评估神经网络的性能。在运用梯度下降最优算法时,权重在每个时期后都会得到增量式地更新。

兼容代价函数

用数学表述为差值平方和:

target 目标值 output 输出值

权重更新的大小和方向是由在代价梯度的反向上采取步骤计算出的。

其中η 是学习率

其中Δw是包含每个权重系数w的权重更新的向量,其计算方式如下:

target 目标值 output 输出值

图表中会考虑到单系数的代价函数

initial weight 初始权重 gradient 梯度 global cost minimum 代价极小值

在导数达到最小误差值之前,我们会一直计算梯度下降,并且每个步骤都会取决于斜率(梯度)的陡度。

多层感知器(前向传播)

这类网络由多层神经元组成,通常这些神经元以前馈方式(向前传播)相互连接。一层中的每个神经元可以直接连接后续层的神经元。在许多应用中,这些网络的单元会采用S型函数或整流线性单元(整流线性激活)函数作为激活函数。

现在想想看要找出处理次数这个问题,给定的账户和家庭成员作为输入

要解决这个问题,首先,我们需要先创建一个前向传播神经网络。我们的输入层将是家庭成员和账户的数量,隐含层数为1, 输出层将是处理次数。

将图中输入层到输出层的给定权重作为输入:家庭成员数为2、账户数为3。

现在将通过以下步骤使用前向传播来计算隐含层(i,j)和输出层(k)的值。

步骤:

1, 乘法-添加方法。

2, 点积(输入*权重)。

3,一次一个数据点的前向传播。

4, 输出是该数据点的预测。

i的值将从相连接的神经元所对应的输入值和权重中计算出来。

i = (2 * 1) + (3* 1) → i = 5

同样地,j = (2 * -1) + (3 * 1) → j =1

K = (5 * 2) + (1* -1) → k = 9

Python中的多层感知器问题的解决

激活函数的使用

为了使神经网络达到其最大预测能力,我们需要在隐含层应用一个激活函数,以捕捉非线性。我们通过将值代入方程式的方式来在输入层和输出层应用激活函数。

这里我们使用整流线性激活(ReLU):

用Keras开发第一个神经网络

关于Keras:

Keras是一个高级神经网络的应用程序编程接口,由Python编写,能够搭建在TensorFlow,CNTK,或Theano上。

使用PIP在设备上安装Keras,并且运行下列指令。

在keras执行深度学习程序的步骤

1,加载数据;

2,创建模型;

3,编译模型;

4,拟合模型;

5,评估模型。

开发Keras模型

全连接层用Dense表示。我们可以指定层中神经元的数量作为第一参数,指定初始化方法为第二参数,即初始化参数,并且用激活参数确定激活函数。既然模型已经创建,我们就可以编译它。我们在底层库(也称为后端)用高效数字库编译模型,底层库可以用Theano或TensorFlow。目前为止,我们已经完成了创建模型和编译模型,为进行有效计算做好了准备。现在可以在PIMA数据上运行模型了。我们可以在模型上调用拟合函数f(),以在数据上训练或拟合模型。

我们先从KERAS中的程序开始,

神经网络一直训练到150个时期,并返回精确值。

㈣ 简单的了解过Python,可以学习深度学习吗

有Python基础的话就可以进行深度学习了呢, 因为深度学习这门课程主要是对于人工智能领域的一个提升课程,所以有编程基础的话学习起来会更好一些。 不过如果之后想要走人工智能这个方向的话,还是建议先系统学习Pytthon,然后再进行深度学习课程的学习。

㈤ Python要学习到什么地步,可以更好的去学习深度学习

《Python深度学习》】这是一本英文版引进的Python深度学习入门书,英文版书名:Deep Learning with Python,由Keras 之父、Google 人工智能研究员 François Chollet 着作,在豆瓣评分9.5。在18年8月份图灵上架了中文版。Keras 是最受欢迎且发展最快的深度学习框架之一,被广泛推荐为上手深度学习的最佳工具。
本书的目标读者是那些具有 Python 编程经验,并且想要开始上手机器学习和深度学习的人。如果你是熟悉机器学习的数据科学家,你将通过本书全面掌握深度学习及其实践。深度学习是机器学习中发展最快、最重要的子领域。如果你是想要上手 Keras 框架的深度学习专家,你会发现本书是市面上最棒的 Keras 速成教程。如果你是研究深度学习的研究生,你会发现本书是对你所受教育的实践补充,有助于你培养关于深度神经网络的直觉,还可以让你熟悉重要的最佳实践。
有技术背景的人,即使不经常编程,也会发现本书介绍的深度学习基本概念和高级概念非常有用。使用 Keras 需要具有一定的 Python 编程水平。另外,熟悉 Numpy 库也会有所帮助,但并不是必需的。你不需要具有机器学习或深度学习方面的经验,本书包含从头学习所需的必要基础知识。你也不需要具有高等数学背景,掌握高中水平的数学知识应该足以看懂本书内容。

㈥ BP神经网络的原理的BP什么意思

原文链接:http://tecdat.cn/?p=19936

在本教程中,您将学习如何在R语言中创建神经网络模型。

神经网络(或人工神经网络)具有通过样本进行学习的能力。人工神经网络是一种受生物神经元系统启发的信息处理模型。它由大量高度互连的处理元件(称为神经元)组成,以解决问题。它遵循非线性路径,并在整个节点中并行处理信息。神经网络是一个复杂的自适应系统。自适应意味着它可以通过调整输入权重来更改其内部结构。

该神经网络旨在解决人类容易遇到的问题和机器难以解决的问题,例如识别猫和狗的图片,识别编号的图片。这些问题通常称为模式识别。它的应用范围从光学字符识别到目标检测。

本教程将涵盖以下主题:

㈦ Python 与深度学习有哪些与建筑设计相接轨的可能性

关注这个问题快一周了,到目前来说还是没发现什么太大的惊喜。我感觉建筑设计界还是要学习一个,不要看到深度学习很火,就弄个大新闻,把这玩意往建筑设计上搬呀。

其实深度学习这事儿到底怎么就能和建筑设计挂钩上?如果单单指“深度学习”,那我的理解是套用了许多层的人工神经网络,这种技术能在建筑设计中扮演什么角色?我目前还真没发现直接用深度学习这种技术来辅助建筑设计的例子。但是如果把题主提问的概念放宽松一点,变成“如何使用机器学习等算法来帮助建筑设计”,那我想还是有比较好的例子的。

机器学习技术是用来让程序的运行性能随着输入量和时间的积累慢慢提高的一种技术。例如你写了一个程序来预测一栋别墅的房价,这个程序的作用是能根据输入数据的[城市,街道,区位,面积,户型,..]等参数预测房价,为了提高程序预测的准确度,你需要先给程序喂一些已经有了估价结果的数据,程序学习一定的数据以后就能自己预测房价了。那么,这种程序工作的方式和我们做建筑设计的工作流程有什么联系呢? 我们做设计时,同样也是先调研和参考大量同类建筑的案例,积累到一定量以后,才能自己动手开始做设计。了解了这一点,便可以设想一种利用机器学习来辅助建筑设计的思路:先让程序学习以前的建筑设计方案,然后程序就能自己去做设计了!

这篇2010年的论文 Computer-generated residential building layouts 可以说就是以上思路的典范。作者自称“使用数据驱动的方式设计了能自动创建视觉效果非常好的建筑布局的工具”,但我觉得论文的质量是远远超过了这样谦逊的描述,因为论文实现的思路极大程度借鉴了现实中建筑师开展设计工作的流程,而且用了贝叶斯网络这个非常漂亮的数学模型描述了一个建筑program在空间中的分布,而贝叶斯网络的训练数据全部来自真实的建筑师的设计方案。个人认为用机器学习的思路去处理建筑布局问题相比于过去十年来Shape Grammar的那种Proceral Modeling的思路来得更为正确。

论文是怎么展开的呢?首先,作者总结了前人工作,说明了以前基于穷举的算法都行不通,要在3D空间中去穷举这么复杂的空间分配问题就和猴子随意敲键盘得到一部莎士比亚作品的难度差不多。接着作者又批判了上个世纪90年代Muller搞的Shape Grammar那一套也不行,因为Shape Grammar就是图形语法,我们知道,编程语言是是基于有限规则的语法集生成的,而建筑设计中这样的规则条款很难形式化描述,而且会倾向于让语法数量变得无穷多。顺带一提,几十年前计算机科学家在攻克语音识别和机器翻译难题的时候,也是认为自然语言是完全基于有限的规则生成的,但后来才发现行不通,直到后来改成基于统计的方法进行研究后,才有了突破性进展。 那么shape grammar不适合建筑设计的另外一点在于,建筑设计不是玩弄图形变换的游戏,每一个建筑空间都有基于功能,心理和效用等因素的考虑。之前也有过用shape grammar分析赖特壁炉式住宅的语法规则的论文,但是应用范围实在太窄。所以这条路是走不通的。

论文作者认为,做方案,一定要基于人的舒适和心理需求,习惯和社会关系等因素,将他们综合考量后才会有比较合理的结果。例如,房间的形状最好是凸包而不要做成凹的,因为在采光上,家具摆放和视线上方正规整的形体都更优;建筑各个功能要形成开放性 - 私密性的梯度,因为这正反映了建筑被使用的方式。 为了研究更好的方法,作者去找到了一家建筑事务所的建筑师们向他们咨询职业建筑师的工作方式,得到了一个特别有用的结论:建筑师在初期和客户咨询后,在画平面的详图之前,一般都会用泡泡图来思考问题,而泡泡图则反映了一个建筑方案高度浓缩的信息,包括私密性,房间邻接关系,采光,业主喜好和文化习俗。


作者最后提到,准备把这个东西运用到更多的建筑类型上,例如办公楼等。如果这玩意儿成熟,再也不用担心建筑师不失业了,偶也!

最后我再说说对这玩意的评价吧。最近几十年知识工作的自动化简直如火如荼地吹遍天南地北的各个行业,许多人都担心低端的劳动职位会不会被取代,例如驾驶汽车,快递,写新闻稿,翻译,速记等等等,这种担心真的不是毫无理由啊!当优雅简洁的数学模型遇到计算机这个可以暴力计算的机器,结合起来就创造了一类又一类可成规模复制的智能机器,想想还是让人后怕的。不过也不用太担心就是,建筑设计行业人所占的因素还是很大的,很多时候甲方找人做设计,都是看重设计师本身,出了专业能力外,沟通,人格魅力,背景,执照等的背书也是很重要的,不过未来这种建筑界持续了很久的行业模式会不会被颠覆就不得而知了。另外,程序也需要吃许多训练数据才能提高自己的设计修养,在目前来看建筑设计的各位同行都把自己搜集的方案当成宝一样藏着,数据量的大而全也很难保证,不知道以后BIM的普及会不会让这方面得到改善。

㈧ 如何用Python一门语言通吃高性能并发,GPU计算和深度学习

第一个就是并发本身所带来的开销即新开处理线程、关闭处理线程、多个处理线程时间片轮转所带来的开销。

实际上对于一些逻辑不那么复杂的场景来说这些开销甚至比真正的处理逻辑部分代码的开销更大。所以我们决定采用基于协程的并发方式,即服务进程只有一个(单cpu)所有的请求数据都由这个服务进程内部来维护,同时服务进程自行调度不同请求的处理顺序,这样避免了传统多线程并发方式新建、销毁以及系统调度处理线程的开销。基于这样的考虑我们选择了基于Tornado框架实现api服务的开发。Tornado的实现非常简洁明了,使用python的生成器作为协程,利用IOLoop实现了调度队列。

第二个问题是数据库的性能,这里说的数据库包括MongoDB和Redis,我这里分开讲。

先讲MongoDB的问题,MongoDB主要存储不同的用户对于验证的不同设置,比如该显示什么样的图片。
一开始每次验证请求都会查询MongoDB,当时我们的MongoDB是纯内存的,同时三台机器组成一个复制集,这样的组合大概能稳定承载八九千的qps,后来随着我们验证量越来越大,这个承载能力逐渐就成为了我们的瓶颈。
为了彻底搞定这个问题,我们提出了最极端的解决方案,干脆直接把数据库中的数据完全缓存到服务进程里定期批量更新,这样查询的开销将大大降低。但是因为我们用的是Python,由于GIL的存在,在8核服务器上会fork出来8个服务进程,进程之间不像线程那么方便,所以我们基于mmap自己写了一套伙伴算法构建了一个跨进程共享缓存。自从这套缓存上线之后,Mongodb的负载几乎变成了零。
说完了MongoDB再说Redis的问题,Redis代码简洁、数据结构丰富、性能强大,唯一的问题是作为一个单进程程序,终究性能是有上限的。
虽然今年Redis发布了官方的集群版本,但是经过我们的测试,认为这套分布式方案的故障恢复时间不够优秀并且运维成本较高。在Redis官方集群方案面世之前,开源世界有不少proxy方案,比如Twtter的TwemProxy和豌豆荚的Codis。这两种方案测试完之后给我们的感觉TwemProxy运维还是比较麻烦,Codis使用起来让人非常心旷神怡,无论是修改配置还是扩容都可以在配置页面上完成,并且性能也还算不错,但无奈当时Codis还有比较严重的BUG只能放弃之。
几乎尝试过各种方案之后,我们还是下决心自己实现一套分布式方案,目的是高度贴合我们的需求并且运维成本要低、扩容要方便、故障切换要快最重要的是数据冗余一定要做好。
基于上面的考虑,我们确定基于客户端的分布式方案,通过zookeeper来同步状态保证高可用。具体来说,我们修改Redis源码,使其向zookeeper注册,客户端由zookeeper上获取Redis服务器集群信息并根据统一的一致性哈希算法来计算数据应该存储在哪台Redis上,并在哈希环的下一台Redis上写入一份冗余数据,当读取原始数据失败时可以立即尝试读取冗余数据而不会造成服务中断。

阅读全文

与python和深度学习接轨相关的资料

热点内容
安卓80有什么bug 浏览:676
如何做单机服务器 浏览:943
校讯通查成绩怎么显示服务器异常 浏览:882
冰箱压缩机工作压力是多少 浏览:408
程序员20多平米租房 浏览:451
电工知识用线的算法 浏览:338
极光推送php服务器端 浏览:5
怎么用命令方块控制僵尸 浏览:774
大型云服务器有哪些 浏览:466
解压版三国街机 浏览:423
去中心化app里面包含什么 浏览:948
密钥安装命令行 浏览:505
文献编译英文 浏览:659
php调用浏览器 浏览:527
数控车床编程初学实例 浏览:949
cad中筛选命令是什么 浏览:801
数控铣床法兰克编程 浏览:331
怎么样分解压缩包图标 浏览:621
php两年工作经验简历 浏览:765
怎么提前解压房贷 浏览:700