‘壹’ python PIL的斗争与未压缩的16位TIFF图像问题,怎么解决
关于Pillow与PIL
PIL(Python Imaging Library)Python强便图像处理库名气比较支持Python 2.7
PIL官网站:
PillowPIL派支今已经发展比PIL本身更具力图像处理库目前新版本3.0.0
PillowGithub主页:
Pillow文档(应版本v3.0.0):
Pillow文档文翻译(应版本v2.4.0):
Python 3.x 安装Pillow
给Python安装Pillow非简单使用pip或easy_install要行代码即
命令行使用PIP安装:
pip install Pillow
或命令行使用easy_install安装:
easy_install Pillow
安装完使用from PIL import Image引用使用库比:
from PIL import Image
im = Image.open("bride.jpg")
im.rotate(45).show()
简单便
‘贰’ 怎么用 Python 将 pdf,doc 等转换成 jpg
1.PDFFactory Pro虚拟打印机,安装后,在任何文档中,选择打印时,选择打印机为pdfFactoryPro,就能生成PDF文件,并可以进行安全设置。
2.SmartPrinter(Doc Pdf xls to pdf/tiff/bmp/jpg/png)一款大家非常熟悉的经典产品,专为转换文件而研发的高品质打印驱动,以运行稳定、转换速度快和图像质量高而着称,通过虚拟打印技术可以完美的将任意可打印文档转换成 PDF、TIFF、JPEG,BMP、PNG、EMF、GIF、TXT格式。
3.雪莹DocConvert虚拟打印转换。雪莹DocConvert是一款文档转化工具,它通过虚拟打印的技术将任何文档转化为PDF,JPG,BMP,TIFF,PCX,PNG等等文档格式。
4.EasyPrint(虚拟打印机) V2.1,本软件实现的功能是把指定文档打印到文件,成为标准的BMP位图,实现无纸打印的功能。主要应用在需要把一些文件打印后扫描再处理,或者一些需要打印效果的软件的插件。例如:把WORD文件打印到BMP文件,然后进行处理
‘叁’ python将图像分割成两半
importos
importre
importsys
importtime
importrandom
#addsystemheadershere...
#导入cv模块
importcv2ascv
#读取图像,支持bmp、jpg、png、tiff等常用格式
height=0
length=0
key=0
picPath="E:\python3.4.0-amd\project\imageProcess\tamamo.jpg"
ifnotos.path.exists(picPath):
print("picturenotexists!exit!")
sys.exit()
srcImage=cv.imread(picPath)
ifsrcImageisNone:
print("readpicturefailed!exit!")
sys.exit()
size=srcImage.shape
height=size[0]
length=size[1]
print("srcImage:height(%u)length(%u)"%(height,length))
#显示原图
#cv.imshow("srcImage",srcImage)
#创建窗口并显示图像
mid=int(length/2)
leftImage=srcImage[0:height,0:mid]
cv.namedWindow("leftImage",cv.WINDOW_NORMAL)
cv.resizeWindow("leftImage",mid,height)
cv.imshow("leftImage",leftImage)
rightIamge=srcImage[0:height,mid:length]
cv.namedWindow("rightIamge",cv.WINDOW_NORMAL)
cv.resizeWindow("rightIamge",mid,height)
cv.imshow("rightIamge",rightIamge)
cv.waitKey(0)
#释放窗口
cv.destroyAllWindows()
‘肆’ 10 个 Python 图像编辑工具
以下提到的这些 Python 工具在编辑图像、操作图像底层数据方面都提供了简单直接的方法。
-- Parul Pandey
当今的世界充满了数据,而图像数据就是其中很重要的一部分。但只有经过处理和分析,提高图像的质量,从中提取出有效地信息,才能利用到这些图像数据。
常见的图像处理操作包括显示图像,基本的图像操作,如裁剪、翻转、旋转;图像的分割、分类、特征提取;图像恢复;以及图像识别等等。Python 作为一种日益风靡的科学编程语言,是这些图像处理操作的最佳选择。同时,在 Python 生态当中也有很多可以免费使用的优秀的图像处理工具。
下文将介绍 10 个可以用于图像处理任务的 Python 库,它们在编辑图像、查看图像底层数据方面都提供了简单直接的方法。
scikit-image 是一个结合 NumPy 数组使用的开源 Python 工具,它实现了可用于研究、教育、工业应用的算法和应用程序。即使是对于刚刚接触 Python 生态圈的新手来说,它也是一个在使用上足够简单的库。同时它的代码质量也很高,因为它是由一个活跃的志愿者社区开发的,并且通过了 同行评审(peer review)。
scikit-image 的 文档 非常完善,其中包含了丰富的用例。
可以通过导入 skimage 使用,大部分的功能都可以在它的子模块中找到。
图像滤波(image filtering):
使用 match_template() 方法实现 模板匹配(template matching):
在 展示页面 可以看到更多相关的例子。
NumPy 提供了对数组的支持,是 Python 编程的一个核心库。图像的本质其实也是一个包含像素数据点的标准 NumPy 数组,因此可以通过一些基本的 NumPy 操作(例如切片、 掩膜(mask)、 花式索引(fancy indexing)等),就可以从像素级别对图像进行编辑。通过 NumPy 数组存储的图像也可以被 skimage 加载并使用 matplotlib 显示。
在 NumPy 的 官方文档 中提供了完整的代码文档和资源列表。
使用 NumPy 对图像进行 掩膜(mask)操作:
像 NumPy 一样, SciPy 是 Python 的一个核心科学计算模块,也可以用于图像的基本操作和处理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模块,它提供了在 n 维 NumPy 数组上的运行的函数。SciPy 目前还提供了 线性和非线性滤波(linear and non-linear filtering)、 二值形态学(binary morphology)、 B 样条插值(B-spline interpolation)、 对象测量(object measurements)等方面的函数。
在 官方文档 中可以查阅到 scipy.ndimage 的完整函数列表。
使用 SciPy 的 高斯滤波 对图像进行模糊处理:
PIL (Python Imaging Library) 是一个免费 Python 编程库,它提供了对多种格式图像文件的打开、编辑、保存的支持。但在 2009 年之后 PIL 就停止发布新版本了。幸运的是,还有一个 PIL 的积极开发的分支 Pillow ,它的安装过程比 PIL 更加简单,支持大部分主流的操作系统,并且还支持 Python 3。Pillow 包含了图像的基础处理功能,包括像素点操作、使用内置卷积内核进行滤波、颜色空间转换等等。
Pillow 的 官方文档 提供了 Pillow 的安装说明自己代码库中每一个模块的示例。
使用 Pillow 中的 ImageFilter 模块实现图像增强:
OpenCV(Open Source Computer Vision 库)是计算机视觉领域最广泛使用的库之一, OpenCV-Python 则是 OpenCV 的 Python API。OpenCV-Python 的运行速度很快,这归功于它使用 C/C++ 编写的后台代码,同时由于它使用了 Python 进行封装,因此调用和部署的难度也不大。这些优点让 OpenCV-Python 成为了计算密集型计算机视觉应用程序的一个不错的选择。
入门之前最好先阅读 OpenCV2-Python-Guide 这份文档。
使用 OpenCV-Python 中的 金字塔融合(Pyramid Blending)将苹果和橘子融合到一起:
SimpleCV 是一个开源的计算机视觉框架。它支持包括 OpenCV 在内的一些高性能计算机视觉库,同时不需要去了解 位深度(bit depth)、文件格式、 色彩空间(color space)之类的概念,因此 SimpleCV 的学习曲线要比 OpenCV 平缓得多,正如它的口号所说,“将计算机视觉变得更简单”。SimpleCV 的优点还有:
官方文档 简单易懂,同时也附有大量的学习用例。
文档 包含了安装介绍、示例以及一些 Mahotas 的入门教程。
Mahotas 力求使用少量的代码来实现功能。例如这个 Finding Wally 游戏 :
ITK (Insight Segmentation and Registration Toolkit)是一个为开发者提供普适性图像分析功能的开源、跨平台工具套件, SimpleITK 则是基于 ITK 构建出来的一个简化层,旨在促进 ITK 在快速原型设计、教育、解释语言中的应用。SimpleITK 作为一个图像分析工具包,它也带有 大量的组件 ,可以支持常规的滤波、图像分割、 图像配准(registration)功能。尽管 SimpleITK 使用 C++ 编写,但它也支持包括 Python 在内的大部分编程语言。
有很多 Jupyter Notebooks 用例可以展示 SimpleITK 在教育和科研领域中的应用,通过这些用例可以看到如何使用 Python 和 R 利用 SimpleITK 来实现交互式图像分析。
使用 Python + SimpleITK 实现的 CT/MR 图像配准过程:
pgmagick 是使用 Python 封装的 GraphicsMagick 库。 GraphicsMagick 通常被认为是图像处理界的瑞士军刀,因为它强大而又高效的工具包支持对多达 88 种主流格式图像文件的读写操作,包括 DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM、TIFF 等等。
pgmagick 的 GitHub 仓库 中有相关的安装说明、依赖列表,以及详细的 使用指引 。
图像缩放:
边缘提取:
Cairo 是一个用于绘制矢量图的二维图形库,而 Pycairo 是用于 Cairo 的一组 Python 绑定。矢量图的优点在于做大小缩放的过程中不会丢失图像的清晰度。使用 Pycairo 可以在 Python 中调用 Cairo 的相关命令。
Pycairo 的 GitHub 仓库 提供了关于安装和使用的详细说明,以及一份简要介绍 Pycairo 的 入门指南 。
使用 Pycairo 绘制线段、基本图形、 径向渐变(radial gradients):
以上就是 Python 中的一些有用的图像处理库,无论你有没有听说过、有没有使用过,都值得试用一下并了解它们。
via: https://opensource.com/article/19/3/python-image-manipulation-tools
作者: Parul Pandey 选题: lujun9972 译者: HankChow 校对: wxy
‘伍’ python 用PIL打开TIFF格式图片无法转换为灰度图是为什么一直报错,有代码注释,和错误截图
It's either a bug or unimplemented in PIL/Pillow. Here is a workaround:
import Image
image = Image.open("Fredy1_002.tif")
image.mode = 'I'
image.point(lambda i:i*(1./256)).convert('L').save('my.jpeg')