‘壹’ 10 个 python 图像编辑工具
以下提到的这些 Python 工具在编辑图像、操作图像底层数据方面都提供了简单直接的方法。
-- Parul Pandey
当今的世界充满了数据,而图像数据就是其中很重要的一部分。但只有经过处理和分析,提高图像的质量,从中提取出有效地信息,才能利用到这些图像数据。
常见的图像处理操作包括显示图像,基本的图像操作,如裁剪、翻转、旋转;图像的分割、分类、特征提取;图像恢复;以及图像识别等等。Python 作为一种日益风靡的科学编程语言,是这些图像处理操作的最佳选择。同时,在 Python 生态当中也有很多可以免费使用的优秀的图像处理工具。
下文将介绍 10 个可以用于图像处理任务的 Python 库,它们在编辑图像、查看图像底层数据方面都提供了简单直接的方法。
scikit-image 是一个结合 NumPy 数组使用的开源 Python 工具,它实现了可用于研究、教育、工业应用的算法和应用程序。即使是对于刚刚接触 Python 生态圈的新手来说,它也是一个在使用上足够简单的库。同时它的代码质量也很高,因为它是由一个活跃的志愿者社区开发的,并且通过了 同行评审(peer review)。
scikit-image 的 文档 非常完善,其中包含了丰富的用例。
可以通过导入 skimage 使用,大部分的功能都可以在它的子模块中找到。
图像滤波(image filtering):
使用 match_template() 方法实现 模板匹配(template matching):
在 展示页面 可以看到更多相关的例子。
NumPy 提供了对数组的支持,是 Python 编程的一个核心库。图像的本质其实也是一个包含像素数据点的标准 NumPy 数组,因此可以通过一些基本的 NumPy 操作(例如切片、 掩膜(mask)、 花式索引(fancy indexing)等),就可以从像素级别对图像进行编辑。通过 NumPy 数组存储的图像也可以被 skimage 加载并使用 matplotlib 显示。
在 NumPy 的 官方文档 中提供了完整的代码文档和资源列表。
使用 NumPy 对图像进行 掩膜(mask)操作:
像 NumPy 一样, SciPy 是 Python 的一个核心科学计算模块,也可以用于图像的基本操作和处理。尤其是 SciPy v1.1.0 中的 scipy.ndimage 子模块,它提供了在 n 维 NumPy 数组上的运行的函数。SciPy 目前还提供了 线性和非线性滤波(linear and non-linear filtering)、 二值形态学(binary morphology)、 B 样条插值(B-spline interpolation)、 对象测量(object measurements)等方面的函数。
在 官方文档 中可以查阅到 scipy.ndimage 的完整函数列表。
使用 SciPy 的 高斯滤波 对图像进行模糊处理:
PIL (Python Imaging Library) 是一个免费 Python 编程库,它提供了对多种格式图像文件的打开、编辑、保存的支持。但在 2009 年之后 PIL 就停止发布新版本了。幸运的是,还有一个 PIL 的积极开发的分支 Pillow ,它的安装过程比 PIL 更加简单,支持大部分主流的操作系统,并且还支持 Python 3。Pillow 包含了图像的基础处理功能,包括像素点操作、使用内置卷积内核进行滤波、颜色空间转换等等。
Pillow 的 官方文档 提供了 Pillow 的安装说明自己代码库中每一个模块的示例。
使用 Pillow 中的 ImageFilter 模块实现图像增强:
OpenCV(Open Source Computer Vision 库)是计算机视觉领域最广泛使用的库之一, OpenCV-Python 则是 OpenCV 的 Python API。OpenCV-Python 的运行速度很快,这归功于它使用 C/C++ 编写的后台代码,同时由于它使用了 Python 进行封装,因此调用和部署的难度也不大。这些优点让 OpenCV-Python 成为了计算密集型计算机视觉应用程序的一个不错的选择。
入门之前最好先阅读 OpenCV2-Python-Guide 这份文档。
使用 OpenCV-Python 中的 金字塔融合(Pyramid Blending)将苹果和橘子融合到一起:
SimpleCV 是一个开源的计算机视觉框架。它支持包括 OpenCV 在内的一些高性能计算机视觉库,同时不需要去了解 位深度(bit depth)、文件格式、 色彩空间(color space)之类的概念,因此 SimpleCV 的学习曲线要比 OpenCV 平缓得多,正如它的口号所说,“将计算机视觉变得更简单”。SimpleCV 的优点还有:
官方文档 简单易懂,同时也附有大量的学习用例。
文档 包含了安装介绍、示例以及一些 Mahotas 的入门教程。
Mahotas 力求使用少量的代码来实现功能。例如这个 Finding Wally 游戏 :
ITK (Insight Segmentation and Registration Toolkit)是一个为开发者提供普适性图像分析功能的开源、跨平台工具套件, SimpleITK 则是基于 ITK 构建出来的一个简化层,旨在促进 ITK 在快速原型设计、教育、解释语言中的应用。SimpleITK 作为一个图像分析工具包,它也带有 大量的组件 ,可以支持常规的滤波、图像分割、 图像配准(registration)功能。尽管 SimpleITK 使用 C++ 编写,但它也支持包括 Python 在内的大部分编程语言。
有很多 Jupyter Notebooks 用例可以展示 SimpleITK 在教育和科研领域中的应用,通过这些用例可以看到如何使用 Python 和 R 利用 SimpleITK 来实现交互式图像分析。
使用 Python + SimpleITK 实现的 CT/MR 图像配准过程:
pgmagick 是使用 Python 封装的 GraphicsMagick 库。 GraphicsMagick 通常被认为是图像处理界的瑞士军刀,因为它强大而又高效的工具包支持对多达 88 种主流格式图像文件的读写操作,包括 DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM、TIFF 等等。
pgmagick 的 GitHub 仓库 中有相关的安装说明、依赖列表,以及详细的 使用指引 。
图像缩放:
边缘提取:
Cairo 是一个用于绘制矢量图的二维图形库,而 Pycairo 是用于 Cairo 的一组 Python 绑定。矢量图的优点在于做大小缩放的过程中不会丢失图像的清晰度。使用 Pycairo 可以在 Python 中调用 Cairo 的相关命令。
Pycairo 的 GitHub 仓库 提供了关于安装和使用的详细说明,以及一份简要介绍 Pycairo 的 入门指南 。
使用 Pycairo 绘制线段、基本图形、 径向渐变(radial gradients):
以上就是 Python 中的一些有用的图像处理库,无论你有没有听说过、有没有使用过,都值得试用一下并了解它们。
via: https://opensource.com/article/19/3/python-image-manipulation-tools
作者: Parul Pandey 选题: lujun9972 译者: HankChow 校对: wxy
‘贰’ 常用的十大python图像处理工具
原文标题:10 Python image manipulation tools.
作者 | Parul Pandey
翻译 | 安其罗乔尔、JimmyHua
今天,在我们的世界里充满了数据,图像成为构成这些数据的重要组成部分。但无论是用于何种用途,这些图像都需要进行处理。图像处理就是分析和处理数字图像的过程,主要旨在提高其质量或从中提取一些信息,然后可以将其用于某种用途。
图像处理中的常见任务包括显示图像,基本操作如裁剪、翻转、旋转等,图像分割,分类和特征提取,图像恢复和图像识别。Python成为这种图像处理任务是一个恰当选择,这是因为它作为一种科学编程语言正在日益普及,并且在其生态系统中免费提供许多最先进的图像处理工具供大家使用。
让我们看一下可以用于图像处理任务中的常用 Python 库有哪些吧。
1.scikit-image
scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。
资源
文档里记录了丰富的例子和实际用例,阅读下面的文档:
http://scikit-image.org/docs/stable/user_guide.html
用法
该包作为skimage导入,大多数功能都在子模块中找的到。下面列举一些skimage的例子:
图像过滤
使用match_template函数进行模板匹配
你可以通过此处查看图库找到更多示例。
2. Numpy
Numpy是Python编程的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准Numpy数组。因此,我们可以通过使用基本的NumPy操作,例如切片、掩膜和花式索引,来修改图像的像素值。可以使用skimage加载图像并使用matplotlib显示图像。
资源
Numpy的官方文档页面提供了完整的资源和文档列表:
http://www.numpy.org/
用法
使用Numpy来掩膜图像.
3.Scipy
scipy是Python的另一个类似Numpy的核心科学模块,可用于基本的图像操作和处理任务。特别是子模块scipy.ndimage,提供了在n维NumPy数组上操作的函数。该包目前包括线性和非线性滤波,二值形态学,B样条插值和对象测量等功能函数。
资源
有关scipy.ndimage包提供的完整功能列表,请参阅下面的链接:
https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution
用法
使用SciPy通过高斯滤波器进行模糊:
4. PIL/ Pillow
PIL( Python图像库 )是Python编程语言的一个免费库,它支持打开、操作和保存许多不同的文件格式的图像。然而, 随着2009年的最后一次发布,它的开发停滞不前。但幸运的是还有有Pillow,一个PIL积极开发的且更容易安装的分支,它能运行在所有主要的操作系统,并支持Python3。这个库包含了基本的图像处理功能,包括点运算、使用一组内置卷积核的滤波和色彩空间的转换。
资源
文档中有安装说明,以及涵盖库的每个模块的示例:
https://pillow.readthedocs.io/en/3.1.x/index.html
用法
在 Pillow 中使用 ImageFilter 增强图像:
5. OpenCV-Python
OpenCV( 开源计算机视觉库 )是计算机视觉应用中应用最广泛的库之一 。OpenCV-Python 是OpenCV的python版API。OpenCV-Python的优点不只有高效,这源于它的内部组成是用C/C++编写的,而且它还容易编写和部署(因为前端是用Python包装的)。这使得它成为执行计算密集型计算机视觉程序的一个很好的选择。
资源
OpenCV-Python-Guide指南可以让你使用OpenCV-Python更容易:
https://github.com/abidrahmank/OpenCV2-Python-Tutorials
用法
下面是一个例子,展示了OpenCV-Python使用金字塔方法创建一个名为“Orapple”的新水果图像融合的功能。
6. SimpleCV
SimpleCV 也是一个用于构建计算机视觉应用程序的开源框架。有了它,你就可以访问几个高性能的计算机视觉库,如OpenCV,而且不需要先学习了解位深度、文件格式、颜色空间等。
它的学习曲线大大小于OpenCV,正如它们的口号所说“计算机视觉变得简单”。一些支持SimpleCV的观点有:
即使是初学者也可以编写简单的机器视觉测试摄像机、视频文件、图像和视频流都是可互操作的资源
官方文档非常容易理解,而且有大量的例子和使用案例去学习:
https://simplecv.readthedocs.io/en/latest/
用法
7. Mahotas
Mahotas 是另一个计算机视觉和图像处理的Python库。它包括了传统的图像处理功能例如滤波和形态学操作以及更现代的计算机视觉功能用于特征计算,包括兴趣点检测和局部描述符。该接口是Python语言,适合于快速开发,但是算法是用C语言实现的,并根据速度进行了调优。Mahotas库速度快,代码简洁,甚至具有最小的依赖性。通过原文阅读它们的官方论文以获得更多的了解。
资源
文档包括安装指导,例子,以及一些教程,可以更好的帮助你开始使用mahotas。
https://mahotas.readthedocs.io/en/latest/install.html
用法
Mahotas库依赖于使用简单的代码来完成任务。关于‘Finding Wally’的问题,Mahotas做的很好并且代码量很少。下面是源码:
https://mahotas.readthedocs.io/en/latest/wally.html
8. SimpleITK
ITK 或者 Insight Segmentation and Registration Toolkit是一个开源的跨平台系统,为开发人员提供了一套广泛的图像分析软件工具 。其中, SimpleITK是建立在ITK之上的简化层,旨在促进其在快速原型设计、教育、解释语言中的应用。SimpleITK 是一个图像分析工具包,包含大量支持一般过滤操作、图像分割和匹配的组件。SimpleITK本身是用C++写的,但是对于包括Python以内的大部分编程语言都是可用的。
资源
大量的Jupyter Notebooks 表明了SimpleITK在教育和研究领域已经被使用。Notebook展示了用Python和R编程语言使用SimpleITK来进行交互式图像分析。
http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/
用法
下面的动画是用SimpleITK和Python创建的刚性CT/MR匹配过程的可视化 。点击此处可查看源码!
9. pgmagick
pgmagick是GraphicsMagick库的一个基于python的包装。 GraphicsMagick图像处理系统有时被称为图像处理的瑞士军刀。它提供了一个具有强大且高效的工具和库集合,支持以88种主要格式(包括重要格式,如DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM和TIFF)读取、写入和操作图像。
资源
有一个专门用于PgMagick的Github库 ,其中包含安装和需求说明。还有关于这个的一个详细的用户指导:
https://github.com/hhatto/pgmagick
用法
使用pgmagick可以进行的图像处理活动很少,比如:
图像缩放
边缘提取
10. Pycairo
Pycairo是图像处理库cairo的一组Python捆绑。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或转换时不会失去清晰度 。Pycairo是cairo的一组绑定,可用于从Python调用cairo命令。
资源
Pycairo的GitHub库是一个很好的资源,有关于安装和使用的详细说明。还有一个入门指南,其中有一个关于Pycairo的简短教程。
库:https://github.com/pygobject/pycairo指南:https://pycairo.readthedocs.io/en/latest/tutorial.html用法
使用Pycairo绘制线条、基本形状和径向梯度:
总结
有一些有用且免费的Python图像处理库可以使用,有的是众所周知的,有的可能对你来说是新的,试着多去了解它们。
‘叁’ python PIL如何才能把图片修改成正方形或者任意尺寸而不产生挤压
使用裁剪(crop)
img.crop(0,0,w,h)
‘肆’ 请问可以用python实现将大图片变成小图片处理吗,这边要做一个图像识别,太大的分辨率运行慢
python有一个图像处理库——PIL,可以处理图像文件。PIL提供了功能丰富的方法,比如格式转换、旋转、裁剪、改变尺寸、像素处理、图片合并等等等等,非常强大。
举个简单的例子,调整图片的大小:
12345678910111213141516171819
import Image infile = 'D:\\original_img.jpg'outfile = 'D:\\adjust_img.jpg'im = Image.open(infile)(x,y) = im.size #read image sizex_s = 250 #define standard widthy_s = y * x_s / x #calc height based on standard widthout = im.resize((x_s,y_s),Image.ANTIALIAS) #resize image with high-qualityout.save(outfile) print 'original size: ',x,yprint 'adjust size: ',x_s,y_s '''OUTPUT:original size: 500 358adjust size: 250 179'''
‘伍’ 1.图像裁剪、加边框、旋转(Python PIL)
日常工作中经常要用Photoshop打印一些地质图,虽然说PS有动作录制的功能,但是打印这个功能我尝试过录制动作后并未能成功运行,而且要打印的图像尺寸很多都是不同的,试了几次后就放弃了,直到后来Python学起来了,通过pywinauto库实现了这个功能,在这里就简单记录下吧。
在写Photoshop的打印操作之前,先来回顾下打印之前的图像处理工作。
接到的地质图多为MapGIS程序导出的jpg图片,偶尔也会有Tif格式的遥感图。对这些图像进行打印很简单,基本流程是:用PS打开图像->裁剪图像四周空白边缘->为图像四周加上3cm宽白色边框(为了美观和装订的需要)->打印。那为啥用PS来打印不直接用Windows自带打印呢,应该是打印需要用到PS特定的颜色处理模式吧,经过试验,通过两种方式打出来的色彩效果确实是不同的。
打印前图像处理的主要目标很简单:
1、裁剪图像四周空白
2、为图像四周加上3cm白色边框
下面就用Python实现它们
图像处理主要用的是PIL这个库,中途由于单位电脑比较旧(4g内存Win7 32位系统,后来重装成64位了,体验就是搞这种东西必须整个64位系统),性能不太行了,也用Opencv整了下,还是感觉PIL稍微快那么一点点,不知道是不是错觉呢。
(后来发现这两步在PS录个动作也能轻松完成(→ܫ←))
一、获取所有图片路径
有时候要打印的图片会放在好多个不同文件夹里面,要把它们遍历出来:
import os
二、读取图片并裁剪四周空白
import PIL
获得了图像尺寸后接下来就要对图像进行边缘空白的裁剪了(其实这两步不分先后顺序的):
裁剪的思路是网上搜到的,整理下就是:
1、先把图像转成灰度模式(值变成单一的0-255以方便判断,如果要裁剪其他颜色我就不知道了,我这里只要裁掉最常见的由MapGIS导出的标准的白色边缘)。
2、分别从四个方向扫描图像,找到四个方向各自第一个灰度值不为255(最纯粹的白色(→ܫ←))的像素,记下它的坐标(i,j)。
3、通过四组坐标大小比较,得到图像除了四周空白区域外的坐标极值,也就得到了裁剪的区域左上(left,top)和右下坐标(right,bottom)。
4、利用PIL.Image.crop(),完成图像的裁剪。
5、没了,就是后来发现PIL自带这个算法,引用一下: 使用PIL裁剪图片白边
要是用PS来做呢,‘图像-裁切-确定’就完事了。
三、给裁剪后的图像加上x厘米的白色边框
这一步主要是为了打印出来的图规范且美观。
这一步要是用PS来搞,‘图像-画布大小-设置相对的宽度和高度’ 就好了
四、判断图像是否需要旋转。
为什么要旋转这些图像呢?因为最终是要把它们用打印机打印出来,而打印机能打印的最大宽度是有限的,所以就有了这个步骤。
单位的打印机型号是惠普的HP DesignJet Z6200 60 英寸照片打印机,最大打印纸张宽度是60英寸,大约就是1524mm左右吧,除了最大尺寸外,日常还用到的纸张宽度有440、610、914、1067、1274等6、7种吧,所以出于节约打印时间和省钱的考虑,为每张图选择最合适的打印纸张宽度也是很有必要的。
判断图像是否需要旋转的思路是这样的:
1、比较图像的宽和高,判断谁是图像的长边和短边。
2、短边如果大于1524mm,这图按1:1就打不出来了,超过打印机最大可装入的纸张的宽度,把这个图像文件放到Oversize_path路径下,后续自己看着办。
3、在短边小于等于1524mm的前提下,根据对图像宽高和长短边的比较,有两种需要旋转的情况:
3.1 如果图像的宽是长边(矮胖的矩形),且宽大于1524mm,那么这图得旋转90°;
3.2 如果图像的高是长边(瘦高的矩形),且高小于1524mm,那么这图也得旋转90°。
*printTOtkinter()是个用tkinter搞的进度显示窗口,就输出下一些文本信息而已。
五、为图像选择最合适的打印纸张尺寸
单位打印纸有438、610、914、1524等7种宽度,现在要选出最适合的一种来进行打印。
在把短边大于1524这种情况排除之后,剩下的图像情况为短边小于1524,即单位的打印机能打印出来了。
这时要判断最佳打印用纸的宽度,有两种情况需要考虑:
1、长边>1524,改用短边来比较选择打印纸宽度。
2、长边 ≤ 1524,用长边来比较选择打印纸宽度。
下面思路就是把要用作比较的边长放入纸张宽度列表,把列表排序后找到比这个边长大一点的那个纸张宽度。
主要的步骤就是这些,再经过一顿复制粘贴完善一下其他细节之后,最后会得到一个存放打印信息的列表,把它用txt存起来,这样后面的PS批量打印需要的信息就全部搞到手了。最后放个gif。