㈠ 使用python的线性回归问题,怎么解决
本文中,我们将进行大量的编程——但在这之前,我们先介绍一下我们今天要解决的实例问题。
1) 预测房子价格
闪电侠是一部由剧作家/制片人Greg Berlanti、Andrew Kreisberg和Geoff Johns创作,由CW电视台播放的美国电视连续剧。它基于DC漫画角色闪电侠(Barry Allen),一个具有超人速度移动能力的装扮奇特的打击犯罪的超级英雄,这个角色是由Robert Kanigher、John Broome和Carmine Infantino创作。它是绿箭侠的衍生作品,存在于同一世界。该剧集的试播篇由Berlanti、Kreisberg和Johns写作,David Nutter执导。该剧集于2014年10月7日在北美首映,成为CW电视台收视率最高的电视节目。
绿箭侠是一部由剧作家/制片人 Greg Berlanti、Marc Guggenheim和Andrew Kreisberg创作的电视连续剧。它基于DC漫画角色绿箭侠,一个由Mort Weisinger和George Papp创作的装扮奇特的犯罪打击战士。它于2012年10月10日在北美首映,与2012年末开始全球播出。主要拍摄于Vancouver、British Columbia、Canada,该系列讲述了亿万花花公子Oliver Queen,由Stephen Amell扮演,被困在敌人的岛屿上五年之后,回到家乡打击犯罪和腐败,成为一名武器是弓箭的神秘义务警员。不像漫画书中,Queen最初没有使用化名”绿箭侠“。
由于这两个节目并列为我最喜爱的电视节目头衔,我一直想知道哪个节目更受其他人欢迎——谁会最终赢得这场收视率之战。 所以让我们写一个程序来预测哪个电视节目会有更多观众。 我们需要一个数据集,给出每一集的观众。幸运地,我从维基网络上得到了这个数据,并整理成一个.csv文件。它如下所示。
闪电侠
闪电侠美国观众数
绿箭侠
绿箭侠美国观众数
1 4.83 1 2.84
2 4.27 2 2.32
3 3.59 3 2.55
4 3.53 4 2.49
5 3.46 5 2.73
6 3.73 6 2.6
7 3.47 7 2.64
8 4.34 8 3.92
9 4.66 9 3.06
观众数以百万为单位。
解决问题的步骤:
首先我们需要把数据转换为X_parameters和Y_parameters,不过这里我们有两个X_parameters和Y_parameters。因此,把他们命名为flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter吧。然后我们需要把数据拟合为两个不同的线性回归模型——先是闪电侠,然后是绿箭侠。 接着我们需要预测两个电视节目下一集的观众数量。 然后我们可以比较结果,推测哪个节目会有更多观众。
步骤1
导入我们的程序包:
Python
1
2
3
4
5
6
7
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
步骤2
写一个函数,把我们的数据集作为输入,返回flash_x_parameter、flash_y_parameter、arrow_x_parameter、arrow_y_parameter values。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
现在我们有了我们的参数,来写一个函数,用上面这些参数作为输入,给出一个输出,预测哪个节目会有更多观众。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
把所有东西写在一个文件中。打开你的编辑器,把它命名为prediction.py,复制下面的代码到prediction.py中。
Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Required Packages
import csv
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
# Function to get data
def get_data(file_name):
data = pd.read_csv(file_name)
flash_x_parameter = []
flash_y_parameter = []
arrow_x_parameter = []
arrow_y_parameter = []
for x1,y1,x2,y2 in zip(data['flash_episode_number'],data['flash_us_viewers'],data['arrow_episode_number'],data['arrow_us_viewers']):
flash_x_parameter.append([float(x1)])
flash_y_parameter.append(float(y1))
arrow_x_parameter.append([float(x2)])
arrow_y_parameter.append(float(y2))
return flash_x_parameter,flash_y_parameter,arrow_x_parameter,arrow_y_parameter
# Function to know which Tv show will have more viewers
def more_viewers(x1,y1,x2,y2):
regr1 = linear_model.LinearRegression()
regr1.fit(x1, y1)
predicted_value1 = regr1.predict(9)
print predicted_value1
regr2 = linear_model.LinearRegression()
regr2.fit(x2, y2)
predicted_value2 = regr2.predict(9)
#print predicted_value1
#print predicted_value2
if predicted_value1 > predicted_value2:
print "The Flash Tv Show will have more viewers for next week"
else:
print "Arrow Tv Show will have more viewers for next week"
x1,y1,x2,y2 = get_data('input_data.csv')
#print x1,y1,x2,y2
more_viewers(x1,y1,x2,y2)
可能你能猜出哪个节目会有更多观众——但运行一下这个程序看看你猜的对不对。
3) 替换数据集中的缺失值
有时候,我们会遇到需要分析包含有缺失值的数据的情况。有些人会把这些缺失值舍去,接着分析;有些人会用最大值、最小值或平均值替换他们。平均值是三者中最好的,但可以用线性回归来有效地替换那些缺失值。
这种方法差不多像这样进行。
首先我们找到我们要替换那一列里的缺失值,并找出缺失值依赖于其他列的哪些数据。把缺失值那一列作为Y_parameters,把缺失值更依赖的那些列作为X_parameters,并把这些数据拟合为线性回归模型。现在就可以用缺失值更依赖的那些列预测缺失的那一列。
一旦这个过程完成了,我们就得到了没有任何缺失值的数据,供我们自由地分析数据。
为了练习,我会把这个问题留给你,所以请从网上获取一些缺失值数据,解决这个问题。一旦你完成了请留下你的评论。我很想看看你的结果。
个人小笔记:
我想分享我个人的数据挖掘经历。记得在我的数据挖掘引论课程上,教师开始很慢,解释了一些数据挖掘可以应用的领域以及一些基本概念。然后突然地,难度迅速上升。这令我的一些同学感到非常沮丧,被这个课程吓到,终于扼杀了他们对数据挖掘的兴趣。所以我想避免在我的博客文章中这样做。我想让事情更轻松随意。因此我尝试用有趣的例子,来使读者更舒服地学习,而不是感到无聊或被吓到。
谢谢读到这里——请在评论框里留下你的问题或建议,我很乐意回复你。
㈡ 如何用python实现含有虚拟自变量的回归
参考资料:
DataRobot | Ordinary Least Squares in Python
DataRoboe | Multiple Regression using Statsmodels
AnalyticsVidhya | 7 Types of Regression Techniques you should know!
㈢ 如何用Python进行线性回归以及误差分析
数据挖掘中的预测问题通常分为2类:回归与分类。
简单的说回归就是预测数值,而分类是给数据打上标签归类。
本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析。
本例中使用一个2次函数加上随机的扰动来生成500个点,然后尝试用1、2、100次方的多项式对该数据进行拟合。
拟合的目的是使得根据训练数据能够拟合出一个多项式函数,这个函数能够很好的拟合现有数据,并且能对未知的数据进行预测。
代码如下:
importmatplotlib.pyplot as plt
importnumpy as np
importscipy as sp
fromscipy.statsimportnorm
fromsklearn.pipelineimportPipeline
fromsklearn.linear_modelimportLinearRegression
fromsklearn.
fromsklearnimportlinear_model
''''' 数据生成 '''
x = np.arange(0,1,0.002)
y = norm.rvs(0, size=500, scale=0.1)
y = y + x**2
''''' 均方误差根 '''
defrmse(y_test, y):
returnsp.sqrt(sp.mean((y_test - y) **2))
''''' 与均值相比的优秀程度,介于[0~1]。0表示不如均值。1表示完美预测.这个版本的实现是参考scikit-learn官网文档 '''
defR2(y_test, y_true):
return1- ((y_test - y_true)**2).sum() / ((y_true - y_true.mean())**2).sum()
''''' 这是Conway&White《机器学习使用案例解析》里的版本 '''
defR22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return1- rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
degree = [1,2,100]
y_test = []
y_test = np.array(y_test)
fordindegree:
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', LinearRegression(fit_intercept=False))])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])
print(clf.named_steps['linear'].coef_)
print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f'%
(rmse(y_test, y),
R2(y_test, y),
R22(y_test, y),
clf.score(x[:, np.newaxis], y)))
plt.plot(x, y_test, linewidth=2)
plt.grid()
plt.legend(['1','2','100'], loc='upper left')
plt.show()
该程序运行的显示结果如下:
[ 0. 0.75873781]
rmse=0.15, R2=0.78, R22=0.53, clf.score=0.78
[ 0. 0.35936882 0.52392172]
rmse=0.11, R2=0.87, R22=0.64, clf.score=0.87
[ 0.00000000e+00 2.63903249e-01 3.14973328e-01 2.43389461e-01
1.67075328e-01 1.10674280e-01 7.30672237e-02 4.88605804e-02
......
3.70018540e-11 2.93631291e-11 2.32992690e-11 1.84860002e-11
1.46657377e-11]
rmse=0.10, R2=0.90, R22=0.68, clf.score=0.90
㈣ 如何用Python进行线性回归以及误差分析
如何用Python进行线性回归以及误差分析
如果你想要重命名,只需要按下:
CTRL-b
状态条将会改变,这时你将可以重命名当前的窗口
一旦在一个会话中创建多个窗口,我们需要在这些窗口间移动的办法。窗口像数组一样组织在一起,从0开始用数字标记每个窗口,想要快速跳转到其余窗口:
CTRL-b 《窗口号》
如果我们给窗口起了名字,我们可以使用下面的命令找到它们:
CTRL-b f
也可以列出所有窗口:
CTRL-b w
㈤ python多元线性回归怎么计算
1、什么是多元线性回归模型?
当y值的影响因素不唯一时,采用多元线性回归模型。
y =y=β0+β1x1+β2x2+...+βnxn
例如商品的销售额可能不电视广告投入,收音机广告投入,报纸广告投入有关系,可以有 sales =β0+β1*TV+β2* radio+β3*newspaper.
2、使用pandas来读取数据
pandas 是一个用于数据探索、数据分析和数据处理的python库
[python]view plain
importpandasaspd
[html]view plain
<prename="code"class="python">#
data=pd.read_csv('/home/lulei/Advertising.csv')
#displaythefirst5rows
data.head()
上面代码的运行结果:
上面显示的结果类似一个电子表格,这个结构称为Pandas的数据帧(data frame),类型全称:pandas.core.frame.DataFrame.
pandas的两个主要数据结构:Series和DataFrame:
Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。
DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典。
[python]view plain
#displaythelast5rows
data.tail()
只显示结果的末尾5行
[html]view plain
#checktheshapeoftheDataFrame(rows,colums)
data.shape
查看DataFrame的形状,注意第一列的叫索引,和数据库某个表中的第一列类似。
(200,4)
3、分析数据
特征:
TV:对于一个给定市场中单一产品,用于电视上的广告费用(以千为单位)
Radio:在广播媒体上投资的广告费用
Newspaper:用于报纸媒体的广告费用
响应:
Sales:对应产品的销量
在这个案例中,我们通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有200个观测值,每一组观测对应一个市场的情况。
注意:这里推荐使用的是seaborn包。网上说这个包的数据可视化效果比较好看。其实seaborn也应该属于matplotlib的内部包。只是需要再次的单独安装。
[python]view plain
importseabornassns
importmatplotlib.pyplotasplt
#ots
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8)
plt.show()#注意必须加上这一句,否则无法显示。
[html]view plain
这里选择TV、Radio、Newspaper作为特征,Sales作为观测值
[html]view plain
返回的结果:
[python]view plain
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8,kind='reg')
plt.show()
结果显示如下:
4、线性回归模型
优点:快速;没有调节参数;可轻易解释;可理解。
缺点:相比其他复杂一些的模型,其预测准确率不是太高,因为它假设特征和响应之间存在确定的线性关系,这种假设对于非线性的关系,线性回归模型显然不能很好的对这种数据建模。
线性模型表达式:y=β0+β1x1+β2x2+...+βnxn其中
y是响应
β0是截距
β1是x1的系数,以此类推
在这个案例中:y=β0+β1∗TV+β2∗Radio+...+βn∗Newspaper
(1)、使用pandas来构建X(特征向量)和y(标签列)
scikit-learn要求X是一个特征矩阵,y是一个NumPy向量。
pandas构建在NumPy之上。
因此,X可以是pandas的DataFrame,y可以是pandas的Series,scikit-learn可以理解这种结构。
[python]view plain
#
feature_cols=['TV','Radio','Newspaper']
#
X=data[feature_cols]
#
X=data[['TV','Radio','Newspaper']]
#printthefirst5rows
printX.head()
#checkthetypeandshapeofX
printtype(X)
printX.shape
输出结果如下:
[python]view plain
#selectaSeriesfromtheDataFrame
y=data['Sales']
#
y=data.Sales
#printthefirst5values
printy.head()
输出的结果如下:
(2)、构建训练集与测试集
[html]view plain
<prename="code"class="python"><spanstyle="font-size:14px;">##构造训练集和测试集
fromsklearn.cross_validationimporttrain_test_split#这里是引用了交叉验证
X_train,X_test,y_train,y_test=train_test_split(X,y,random_state=1)
#default split is 75% for training and 25% for testing
[html]view plain
printX_train.shape
printy_train.shape
printX_test.shape
printy_test.shape
输出结果如下:
注:上面的结果是由train_test_spilit()得到的,但是我不知道为什么我的版本的sklearn包中居然报错:
处理方法:1、我后来重新安装sklearn包。再一次调用时就没有错误了。
2、自己写函数来认为的随机构造训练集和测试集。(这个代码我会在最后附上。)
(3)sklearn的线性回归
[html]view plain
fromsklearn.linear_modelimportLinearRegression
linreg=LinearRegression()
model=linreg.fit(X_train,y_train)
printmodel
printlinreg.intercept_
printlinreg.coef_
输出的结果如下:
[html]view plain
#
zip(feature_cols,linreg.coef_)
输出如下:
y=2.668+0.0464∗TV+0.192∗Radio-0.00349∗Newspaper
如何解释各个特征对应的系数的意义?
对于给定了Radio和Newspaper的广告投入,如果在TV广告上每多投入1个单位,对应销量将增加0.0466个单位。就是加入其它两个媒体投入固定,在TV广告上每增加1000美元(因为单位是1000美元),销量将增加46.6(因为单位是1000)。但是大家注意这里的newspaper的系数居然是负数,所以我们可以考虑不使用newspaper这个特征。这是后话,后面会提到的。
(4)、预测
[python]view plain
y_pred=linreg.predict(X_test)
printy_pred
[python]view plain
printtype(y_pred)
输出结果如下:
5、回归问题的评价测度
(1) 评价测度
对于分类问题,评价测度是准确率,但这种方法不适用于回归问题。我们使用针对连续数值的评价测度(evaluation metrics)。
这里介绍3种常用的针对线性回归的测度。
1)平均绝对误差(Mean Absolute Error, MAE)
(2)均方误差(Mean Squared Error, MSE)
(3)均方根误差(Root Mean Squared Error, RMSE)
这里我使用RMES。
[python]view plain
<prename="code"class="python">#计算Sales预测的RMSE
printtype(y_pred),type(y_test)
printlen(y_pred),len(y_test)
printy_pred.shape,y_test.shape
fromsklearnimportmetrics
importnumpyasnp
sum_mean=0
foriinrange(len(y_pred)):
sum_mean+=(y_pred[i]-y_test.values[i])**2
sum_erro=np.sqrt(sum_mean/50)
#calculateRMSEbyhand
print"RMSEbyhand:",sum_erro
最后的结果如下:
(2)做ROC曲线
[python]view plain
importmatplotlib.pyplotasplt
plt.figure()
plt.plot(range(len(y_pred)),y_pred,'b',label="predict")
plt.plot(range(len(y_pred)),y_test,'r',label="test")
plt.legend(loc="upperright")#显示图中的标签
plt.xlabel("thenumberofsales")
plt.ylabel('valueofsales')
plt.show()
显示结果如下:(红色的线是真实的值曲线,蓝色的是预测值曲线)
直到这里整个的一次多元线性回归的预测就结束了。
6、改进特征的选择
在之前展示的数据中,我们看到Newspaper和销量之间的线性关系竟是负关系(不用惊讶,这是随机特征抽样的结果。换一批抽样的数据就可能为正了),现在我们移除这个特征,看看线性回归预测的结果的RMSE如何?
依然使用我上面的代码,但只需修改下面代码中的一句即可:
[python]view plain
#
feature_cols=['TV','Radio','Newspaper']
#
X=data[feature_cols]
#
#X=data[['TV','Radio','Newspaper']]#只需修改这里即可<prename="code"class="python"style="font-size:15px;line-height:35px;">X=data[['TV','Radio']]#去掉newspaper其他的代码不变
# print the first 5 rowsprint X.head()# check the type and shape of Xprint type(X)print X.shape
最后的到的系数与测度如下:
LinearRegression(_X=True, fit_intercept=True, normalize=False)
然后再次使用ROC曲线来观测曲线的整体情况。我们在将Newspaper这个特征移除之后,得到RMSE变小了,说明Newspaper特征可能不适合作为预测销量的特征,于是,我们得到了新的模型。我们还可以通过不同的特征组合得到新的模型,看看最终的误差是如何的。
备注:
之前我提到了这种错误:
注:上面的结果是由train_test_spilit()得到的,但是我不知道为什么我的版本的sklearn包中居然报错:
处理方法:1、我后来重新安装sklearn包。再一次调用时就没有错误了。
2、自己写函数来认为的随机构造训练集和测试集。(这个代码我会在最后附上。)
这里我给出我自己写的函数:
㈥ 关于python简单线性回归
线性回归:
设x,y分别为一组数据,代码如下
import matplotlib.pyplot as plt
import numpy as np
ro=np.polyfit(x,y,deg=1) #deg为拟合的多项式的次数(线性回归就选1)
ry=np.polyval(ro,x) #忘记x和ro哪个在前哪个在后了。。。
print ro #输出的第一个数是斜率k,第二个数是纵截距b
plt.scatter(x,y)
plt.plot(x,ry)