A. 数控车床子程序调用编程实例
图示为车削不等距槽的示例。对等距槽采用循环比较简单,而不等距槽则调用子程序较为简单。
已知毛坯直径Φ32mm,长度为77mm,一号刀为外圆车刀,三号刀为切断刀,其宽度为2mm。加工程序如下
%0010
N001 G92 X150.0 Z100.0
N002 M03 S800 M08
N003 G00 X35.0 Z0
G95 F0.30 (转进给)
N004 G01 X0
N005 G00 X30.0 Z2.0
N006 G01 Z-55.0 F0.3
N007 G00 X150.0 Z100.0
N008 X32.0 Z0
T03
N009 M98 P15 L2
N010 G00 W-12.0
N011 G01 X0 F0.12
N012 G04 P2.0
N013 G00 X150.0 Z100.0 M09
N014 M30
%0015
N101 G00 W-12.0
N102 G01 U-12.0 F0.15
N103 G04 X1.0
N104 G00 U12
N105 W-8
N106 G01 U-12 F0.15
N107 G04 X1.0
N108 G00 U12
N109 M99
B. 数控车床g71怎么编程请举个例子谢谢了
数控车床g71格式为:
G71U_R_
G71P_Q_U_W_F_
参数说明
第一行:
U表示背吃刀量(半径值)R表示退刀量
第二行:
P表示精加工轨迹中第一个程序段号
Q表示精加工轨迹中最后一个程序段号
U表示径向(X轴)精车余量(直径值)
W表示轴向(Z轴)精车余量
所有循环指令都需要制定循环点,循环点又叫起刀点,该位置一般定在毛坯直径+2,长度为2的位置,例如毛坯直径为30,循环点为X32,Z2.
(2)11个经典数控车床编程实例扩展阅读:
G71外圆粗车循环的例子
毛坯为棒料,粗加工切削深度为7mm,进给量0.3mm/r,主轴转速为500r/mm,精加工余量X向4mm(直径上),Z向2mm,进给量为0.15mm/r,主轴转速为800r/min,程序起点见图。
采用混合编程
%0003
N01G92X200.0Z220.0;坐标系设定
N02G00X160.0Z180.0
M03S800
G95F0.30(转进给)
N03G71U7.0R1.0P04Q10U4.0W2.0S500;(粗车循环)
N04G00X40.0S800
N05G01W-40.0F0.15
N06X60.0W-30.0
N07W-20.0
N08X100.0W-10.0
N09W-20.0
N10X140.0W-20.0
N11G94F1000
N12G01X200.0Z220.0
N13M05
N14M30
C. 数控编程的实例!
数控机床编程实例
作者: 来源:
--------------------------------------------------------------------------------
常用的圆弧编程指令是G2和G3,使用时必须编入圆弧起点坐标,终点坐标、圆弧半径或中心坐标,可处理各种类型的圆弧编程。西门子810D/840D系统中的CT和RND指令也可以生成精确的圆弧轨迹,在加工轮廓中出现用圆弧与其他直线或圆弧相切连接的轨迹时,灵活运用CT和RND指令进行圆弧编程比使用G2和G3指令方便得多:
--------------------------------------------------------------------------------
一、两种特殊的圆弧编程指令:CT和RND
常用的圆弧编程指令是G2和G3,使用时必须编入圆弧起点坐标,终点坐标、圆弧半径或中心坐标,可处理各种类型的圆弧编程。西门子810D/840D系统中的CT和RND指令也可以生成精确的圆弧轨迹,在加工轮廓中出现用圆弧与其他直线或圆弧相切连接的轨迹时,灵活运用CT和RND指令进行圆弧编程比使用G2和G3指令方便得多:
1、RND指令处理轮廓拐点的圆弧过渡
RND指令的含义:轮廓拐点处用指定半径的圆弧过渡处理,并且和相关的直线或圆弧相切连接,数控系统自动运算各个切点的坐标。
参照图1 加工内容为底边外的其余轮廓,所用程序如下。
N005 G54 G90 G0 Z100 T1 D1
N010 X-70 Y-50
N015 M03 S1000 F500 Z-10
N020 G41 Y-20
N025 G1 Y70 RND=5
N030 G1 X-40 RND=5
N035 G3 ×0 CR=20 RND=5
N040 G3 ×40 CR=20 RND=5
N045 G1×70 RND=5
N050 G1 Y-30
N055 M30
程序中用RND=5的格式表示轮廓拐点处用半径R5的圆弧过渡处理,并与相关的直线或圆弧相切连接,数控系统自动运算各个切点的坐标,程序中不需写入切点的坐标。而用G2和G3指令编写各处R5圆弧就必须计算各个切点的坐标(共10个点),还多了五条程序。
2、CT指令完成直线和圆弧或圆弧和圆相切边接
CT指令的含义是:经过一段直线或圆弧的结束点P1和另一个指定点P2生成一段圆弧并且和前面的直线或圆弧在P1点处相切,数控系统自动运算圆弧半径CT指令是模态的。
参照图2 加工内容为底边外的其余轮廓,所用程序如下:
N005 G54 G90 G0 Z100 T1 D1
N010 X-90 Y-120
N015 M03 S1000 F500Z-10
N020 G41Y-100
N025 G1 Y20
N030 X-60
N040 Yo
N045 CT X-20(第一个R20圆弧)
N050 X20(第二个R20圆弧)
N055 X60(第三个R20圆弧)
N060 G1 Y20
N065 G1×90
N070 Y-100
N075 M30
用CT在编制程序时只需输入切点坐标而不用写入圆弧半径,也不用判断圆弧的方向,在直线和圆弧或多段圆弧相切连接的轮廓编程时使用非常方便。
3、CT和RND指令在极坐标系中的应用
在极坐标系中用G2和G3指令编程时有一个限制,极点必须设定在所编程圆弧的中心。而用CT和RND指令就很好地克服了这一障碍。
(1)RND指令在极坐标系中的应用
参照图3在数控铣床加工4个30度的V型槽,以90度位置的V型槽为例程序如下。
N005 G54 G0 T1 D1 Z100
N010 G111 Xo YO
N015 AP=90-15 RP=110
N020 M03 S1000 F500 Z10
N025 G42 RP=100
N030 G1 RP=0 RND=10
N035 G1 RP=100
N040 M30
(2)CT指令在极坐标系中的应用。
参照图4 加工上部的3段圆弧和2段直线相切连接的部位,程序如下。
N005 G54 G90 Go Z100 T1 D1
N010 G111 XO YO
N015 AP=90-36-18 RP=150
N020 M03 S1000 F500 Z-10
N025 G42 RP=130
N030 G1 RP=142.66/2
N035 CT AP=90-18
N040 AP=90+18
N045 AP=90+18+36
N050 G1 RP=150
N055 M30
图3和图4 这两种类型的工件加工部位使用算术坐标系编程数据处理比较麻烦,在极坐标系中用G2和G3指令编程圆弧时极点必须设定在所编圆弧的中心,需要一些计算工作,而使用RND和CT指令编程圆弧时,极点就不必设定在所编圆弧的中心,极点可以设定在任意的方便数据处理的位置。图3和图4 这两种类型的工件加工部位在编程时使用极坐标且极点设定在工件中心最为方便。
二、特殊刀具补偿方法在加工扇形段导入板中的应用
1、一般的刀具补偿方法
参照图5 ,在数控铣上用40mm立铣刀加工60H7的槽,按照槽的边界线进行编程,使用的程序如下。
N005 G54 G90 Go Z100 T1 D1
N010 X-150 YO
N020 M03 S300 F100 Z30
N025 G42 Y30
N030 G1×150
N035 Y-30
N040 X-150
N050 M30
实际加工中要经过粗加工、半精加工和精加工运行三次程序,对应的半径补偿值先大后小分别是22mm,20.5mm,20mm(理念值,最终的半径补偿值要经过实际测量确定)。
2、特殊的刀具补偿方法
参照图5,在数控铣床上40mm立铣刀加工60H7的槽,按照中心线进行编程,使用的程序如下。
N005 G54 G90 GO Z100 T1 D1
N010 X-150 YO
N020 M03 S300 F100 Z30
N025 G42 X-140
N030 G1 X150
N035 GO Z100
N040 G40 X-150
N050 Z30
N055 G41 X-140
N060 G1 X150
N065 GO Z100
N070 M30
实际加工中要经过粗加工、半精加工和精加工运行三次程序,对应的半径补偿先小后大分别是8mm、9.5mm,10mm(理论值,最终的半径补偿值要经过实际测量后确定),最终的半径补偿理论值=槽的宽度/2-刀具半径。在程序中分别用G41和G42激活两次刀补,增加了一次空行程,这种使用刀具半径补偿的方式在加工一般类型的工件时显得很麻烦,但是在加工特定类型的工件时使用这种方法就会使编程工作变得非常简单。
3、在加工扇形段导入板中的应用
在一些比较特殊槽体的加工中,图纸中只标注槽的宽度、深度和中心线的形状尺寸,针对这一类型的工件,按照中心线进行编程,加工中应用特殊的刀具补偿方法。
参照图6,这是我公司薄板厂连铸设备中使用的扇形段导入板,它是扇形段导入装置中的关键零件。用Tk6920数控锉铣床的加工七条128×44mm导入槽。该工件的七条导入槽是由多段圆弧和直线相切连接构成,图纸中只标注了槽的宽度、深度和中心线的形状尺寸,以上部第一个导入槽为例说明特殊的刀具补偿使用方法,按照中心线进行编程。
程序名称:CA01
程序内容:N5 G54 G90 G64 GO Wo Z150 T1 D1(调用第一个刀号)
N10 G111 XO YO
N15 X=-1804-100 Y=464.424
N20 M04 S250 F200 Z-44
N25 G41 X=IC(50)(激活刀补开始加工槽体的上边界)
N30 G1 X=-1804+920.617
N35 CT AP=90-16.03 RP=1499.5
N40 G1 AP=90-16.03 RP=1499.5+100
N45 GO G40 X=IC(100)Z150
N50 X=-1804-100 Y=464.424 T1 D2(调用第二个刀号)
N55 G42 X=IC(50)(激活刀补开始加工槽体的下边界)
N60 G1 X=-1804+920.617
N65 CT AP=90-16.03 RP=1499.5
N70 G1 AP90-16.03 RP=1499.5+100
N75 GO G40 X=IC(100)Z150
N80 M30
槽的宽度和中心线不对称,程序中用了两个刀号,加工槽体的上边界时用D1,加工槽体的下边界是时用D2,实际加工中用50mm铣刀要经过粗加工、半精加工和精加工运行三次程序,对应的半径补偿值先小后大分别是D1=100mm,12mm,12.5mm,D2=13mm,15mm,15.5mm.
如果使用一般的刀具补偿使用方法,按照槽的边界线进行编程,就要计算槽的边界线中各段圆弧和直线切点的坐标以及各段圆弧的半径,计算量是非常大的。而按照中心线进行编程就可直接使用力纸上标注的尺寸,避免了大量、繁琐的数据计算工作,保证了程序中所用数据的准确性,极大的提高了编程效率。
其方法有两个特殊:(1)按照中心线进行编程而不是按照真实的加工边界线进行编程。(2)刀具补偿值按照粗加工、半精加工和精加工的顺序逐渐加大,理论补偿值二加工的边界到中心线的距离--刀具半径。优点是直接使用图纸上标注的尺寸进行编程,保证了程序中所用数据的准确性,不需进行大量繁琐的数据计算工作。
D. 数控程序中g71编程实例
图 G71外径复合循环编程实例
%118
N1 G59 G00 X80 Z80 (选定坐标系G55,到程序起点位置)
N2 M03 S400 (主轴以400r/min正转)
N3 G01 X46 Z3 F100 (刀具到循环起点位置)
N4 G71U1.5R1P5Q13X0.4 Z0.1(粗切量:1.5mm精切量:X0.4mm Z0.1mm)
N5 G00 X0 (精加工轮廓起始行,到倒角延长线)
N6 G01 X10 Z-2 (精加工2×45°倒角)
N7 Z-20 (精加工Φ10外圆)
N8 G02 U10 W-5 R5 (精加工R5圆弧)
N9 G01 W-10 (精加工Φ20外圆)
N10 G03 U14 W-7 R7 (精加工R7圆弧)
N11 G01 Z-52 (精加工Φ34外圆)
N12 U10 W-10 (精加工外圆锥)
N13 W-20 (精加工Φ44外圆,精加工轮廓结束行)
N14 X50 (退出已加工面)
N15G00 X80 Z80 (回对刀点)
N16 M05 (主轴停)
N17 M30 (主程序结束并复位)
(4)11个经典数控车床编程实例扩展阅读:
数控编程是数控加工准备阶段的主要内容之一,通常包括:
分析零件图样,确定加工工艺过程;计算走刀轨迹,得出刀位数据;编写数控加工程序;制作控制介质;校对程序及首件试切。有手工编程和自动编程两种方法。
总之,它是从零件图纸到获得数控加工程序的全过程。
E. 数控车床怎么编程
简单例子:设计一个简单的轴类零件,要求轮廓只要有圆弧和直线,包含轮廓图。
G99M08
M03S1000T0101
G00X40Z2
G71U2R1F0.25S1000T0101(此处S与T可以省略)
G71P10Q20U1.0W0.2
N10G00X0
G01Z0F0.1
X5
G03X15Z-5R5F0.1
G01Z-13F0.1
X22
X26W-2
W-11
G02X30Z-41R47F0.1
G01W-9F0.1
G02X38W-4R4F0.1
N20G01W-10F0.1
G00X100Z100
T0202S1200
G00X40Z2
G70P10Q20
G00X100Z100
M30
F. 数控车床G71车内孔编程实例
用内径粗加工复合循环编制图1所示零件的加工程序:要求循环起始点在A(46,3),切削深度为1.5mm(半径量)。退刀量为1mm,X方向精加工余量为0.4mm,Z方向精加工余量为0.1mm,其中点划线部分为工件毛坯。
备注
N1 T0101(换一号刀,确定其坐标系)。
N2 G00 X80 Z80(到程序起点或换刀点位置)。
N3 M03 S400(主轴以400r/min正转)。
N4 X6 Z5(到循环起点位置)。
G. 数控如何编程
问题一:数控车床怎么编程? O1程序命名,大写字母O开头
N1;实际操作里面,使用N了表示一段工序哪敏
T0101;选择1号刀具,后面一个01是摩耗仔山
M03 S500;主轴正转,转速为500转
G00 Z1.0;快速靠近工件
X52.;
G71 U1.R0.3;外圆粗加工循环,单边进给量为0.3
G71 P10Q20U0.1W0.05F0.15;定义粗加工的其他参数
N10 G00 X16.;其实程序段N10,注意第一行一定要走X轴!
G01 Z0 F0.05;F为精加工的进给速度,粗加工不受影响。
X20.Z-2.; 20外圆右边倒角
Z-20.;20的外圆面
X30.Z-35.; 圆锥面
X40.;40外圆的右端面
Z-45.;40外圆面
X46.;50外圆右端面
X50.W-2.;50外圆右边倒角
Z-60.;50外圆面
N20 X52.;循环结束段N20
G00 X100.;刀具离开工件
Z100.;
M05;主轴停止,
M00;程序暂停,然后手动测量..
N2精加工程序段
T0202;选择2号刀具
M03 S1000;主轴正传1000
G00 Z1.;刀具快速靠近工件
X52.;
G70 P10 Q20;进行精加工
G00 X100.;刀具离开工件
Z100.;
M05;主轴停止
M30;程序停止 就是这样编程的明白不!
问题二:如何学习数控编程 首先我要强调一下,如果能数控编程各种语言,那么你在社会人才竞争中就非常有优势。
目前在国内制造业对数控加工高速增长的需求形势下,数控编程技术人才出现了严重短缺,数控编程技术已成为就业市场上的需求热点。
一、学好数控编程技术需要具备以下几个基本条件:
(1)具有基本的学习资质,即学员具备一定的学习能力和预备知识。
(2)有条件接受良好的培训,包括选择好的培训机构和培训教材。
(3)在实践中积累经验。
二、学习数控编程技术,要求学员首先掌握一定的预备知识和技能,包括:
(1)基本的几何知识(高中以上即可)和机械制图基础。
(2)基础英语(高中以上即可)。
(3)机械加工常识。
(4)基本的三维造型技能。
三、选择培训教材应考虑的因素包括:
(1)教材的内容应适合于实际编程应用的要求,以目前广泛采用的基于CAD/CAM软件的交互式图形编程技术为主要内容。在讲授软件操作、编程方法等实用技术的同时也应包含一定的基础知识,使读者知其然更知其所以然。
(2)教材的结构。数控编程技术的学习是一个分阶段不断提高的过程,因此教材的内容应按不同的学习阶段进行合理的分配。同时,从应用角度对内容进行系统的归纳和分类,便于读者从整体上理解和记忆。
四、数控编程的学习内容和学习过程基本可以归纳为3个阶段:
第1阶段:基础知识的学习,包括数控加工原理、数控程序、数控加工工艺等方面的基础知识。
第2阶段:数控编程技术的学习李戚枝,在初步了解手工编程的基础上,重点学习基于CAD/CAM软件的交互式图形编程技术。
第3阶段:数控编程与加工练习,包括一定数量的实际产品的数控编程练习和实际加工练习。
五、学习方法与技巧
同其他知识和技能的学习一样,掌握正确的学习方法对提高数控编程技术的学习效率和质量起着十分重要的作用。下面是几点建议:
(1)集中精力打歼灭战,在一个较短的时间内集中完成一个学习目标,并及时加以应用,避免进行马拉松式的学习。
(2)对软件功能进行合理的分类,这样不仅可提高记忆效率,而且有助于从整体上把握软件功能的应用。
(3)从一开始就注重培养规范的操作习惯,培养严谨、细致的工作作风,这一点往往比单纯学习技术更为重要。
(4)将平时所遇到的问题、失误和学习要点记录下来,这种积累的过程就是水平不断提高的过程。
六、如何学习CAM
交互式图形编程技术的学习(也就是我们常说的CAM编程的要点)可分三个方面:
1、是学习CAD/CAM软件应重点把握核心功能的学习,因为CAD/CAM软件的应用也符合所谓的“20/80原则”,即80%的应用仅需要使用其20%的功能。
2、是培养标准化、规范化的工作习惯。对于常用的加工工艺过程应进行标准化的参数设置,并形成标准的参数模板,在各种产品的数控编程中尽可能直接使用这些标准的参数模板,以减少操作复杂度,提高可靠性。
3、是重视加工工艺的经验积累,熟悉所使用的数控机床、刀具、加工材料的特性,以便使工艺参数设置更为合理。
需要特别指出的是,实践经验是数控编程技术的重要组成部分,只能通过实际加工获得,这是任何一本数控加工培训教材都不可能替代的。虽然本书充分强调与实践相结合,但应该说在不同的加工环境下所产生的工艺因素变化是很难用书面形式来表述完整的。
最后,如同学习其他技术一样,要做到“在战略上藐视敌人,在战术上重视敌人”,既要对完成学习目标树立坚定的信心,同时又脚踏实地地对待每一个学习环节。
所以,只要你对数控编程感兴趣,本人严重支持你去学它,前途无量啊。
本文参考地址:
...>>
问题三:数控编程怎样做 20分 教你如何成为数控机床编程高手,建议初学者认真阅读。要想成为一个数控高手(金属切削类),从大学毕业进工厂起,最起码需要6年以上的时间。他既要有工程师的理论水平,又要有高级技师的实际经验及动手能力。第一步:必须是一个优秀的工艺员。数控机床集钻、铣、镗、铰、攻丝等工序于一体。对工艺人员的技术素养要求很高。数控程序是用计算机语言来体现加工工艺的过程。工艺是编程的基础。不懂工艺,绝不能称会编程。其实,当我们选择了机械切削加工这一职业,也就意味着从业早期是艰辛的,枯糙的。大学里学的一点基础知识面对工厂里的需要是少得可怜的。机械加工的工程师,从某种程度上说是经验师。因此,很多时间必须是和工人们在一起,干车床、铣床、磨床,加工中心等;随后在办公室里编工艺、估材耗、算定额。你必须熟悉各类机床的性能、车间师傅们的技能水平。这样经过2-3年的修炼,你基本可成为一个合格的工艺人员。从我个人的经历来看,我建议刚工作的年轻大学生们,一定要虚心向工人师傅们学习,一旦他们能把数十年的经验传授与你,你可少走很多弯路。因为这些经验书本上是学不到的,工艺的选择是综合考虑设备能力和人员技术能力的选择。没有员工的支持和信任,想成为优秀的工艺员是不可能的。通过这么长时间的学习与积累,你应达到下列技术水准和要求:1、 熟悉钻、铣、镗、磨、刨床的结构、工艺特点,2、 熟悉加工材料的性能。3、 扎实的刀具理论基础知识,掌握刀具的常规切削用量等。4、 熟悉本企业的工艺规范、准则及各种工艺加工能达到的一般要求,常规零件的工艺路线。合理的材料消耗及工时定额等。5、 收集一定量的刀具、机床、机械标准的资料。特别要熟悉数控机床用的刀具系统。6、 熟悉冷却液的选用及维护。7、 对相关工种要有常识性的了解。比如:铸造、电加工、热处理等。8、 有较好的夹具基础。9、 了解被加工零件的装配要求、使用要求。10、有较好的测量技术基础。第二步:精通数控编程和计算机软件的应用。这一点,我觉得比较容易,编程指令也就几十个,各种系统大同小异。一般花1-2个月就能非常熟悉。自动编程软件稍复杂些,需学造型。但对于cad基础好的人来说,不是难事。另外,如果是手工编程,解析几何基础也要好!读书人对这些知识的学习是最适应的。在实践中,一个好程序的标准是:1、 易懂,有条理,操作者人人都能看懂。2、 一个程序段中指令越少越好,以简单、实用、可靠为目的。从编程角度对指令的理解,我以为指令也就G00和G01,其他都为辅助指令,是方便编程才设置的。3、 方便调整。零件加工精度需做微调时最好不用改程序。比如,刀具磨损了,要调整,只要改刀具偏置表中的长度、半径即可。4、 方便操作。程序编制要根据机床的操作特点来编,有利于观察、检查、测量、安全等。例如,同一种零件,同样的加工内容,在立式加工中心和卧式加工中心分别加工,程序肯定不一样。在机械加工中,最简单的方法就是最好的方法。只要有实践经验的同行,想必都会同意这句话吧!第三步:能熟练操作数控机床。这需要1-2年的学习,操作是讲究手感的,初学者、特别是大学生们,心里明白要怎么干,可手就是不听使唤。在这过程中要学:系统的操作方式、夹具的安装、零件基准的找正、对刀、设置零点偏置、设置刀具长度补偿、半径补偿,刀具与刀柄的装、卸,刀具的刃磨、零件的测量(能熟练使用游标卡尺、千分卡、百分表、千分表、内径杠杆表)等。最能体现操作水平的是:卧式加工中心和大型龙门(动粱、顶梁)加工中心。操作的练习需要悟性!有时真有一种“悠然心会,妙处难与君说”的意境!在数控车间你就静下心来好好练吧!一般来说,从首件零件的加工到加工......>>
问题四:数控编程的步骤是? 数控机床程序编制的内容主要包括以下步骤:
一.工艺方案分析
?确定加工对象是否适合于数控加工(形状较复杂,精度一致要求高)
?毛坯的选择(对同一批量的毛坯余量和质量应有一定的要求)。
?工序的划分(尽可能采用一次装夹、集中工序的加工方法)。
二.工序详细设计
?工件的定位与夹紧。
?工序划分(先大刀后小刀,先粗后精,先主后次,尽量“少换刀”)。
?刀具选择。
?切削参数。
?工艺文件编制工序卡(即程序单),走刀路线示意图。程序单包括:程序名称,刀具型号,加工部位与尺寸,装夹示意图
三.编写数控加工程序
?用UG设置编出数控机床规定的指令代码(G,S,M)与程序格式。
?后处理程序,填写程序单。
问题五:数控机床怎么编程序 首先,要树立一个观念:想学好数控,必须对数控感兴趣。
其次,再谈如何学数控:
针对性的学习,学哪个系统,就去记哪个系统的G、M代码,这很重要。
记熟了这些代码,并知道什么时候采用什么代码,就可以试着编写些简单的零件程序,增加熟练程度。
方便的东西懂得了多了,可以试着加工一些简单的零件,这样一来,理论实际相结合,很轻松的就学好数控了。
可以参考下面的模式:
G代码 组别 解释 ; G00 01 定位 (快速移动) ; G01 直线切削 ; . G02 顺时针切圆弧 (CW,顺时钟) ; G03 逆时针切圆弧 (CCW,逆时钟) ; G04 00 暂停 (Dwell) ; G09 停于精确的位置 ; G20 06 英制输入 ; G21 公制输入 ; G22 04 内部行程限位 有效 ; G23 内部行程限位 无效 ; G27 00 检查参考点返回 ; G28 参考点返回 ; G29 从参考点返回 ; G30 回到第二参考点 ;G32 01 切螺纹 G40 07 取消刀尖半径偏置 ;G41 刀尖半径偏置 (左侧) ;G42 刀尖半径偏置 (右侧) ;G50 00 修改工件坐标;设置主轴最大的 RPM ;G52 设置局部坐标系 ;G53 选择机床坐标系 ;G70 00 精加工循环 ;G71 内外径粗切循环 ;G72 台阶粗切循环 ;G73 成形重复循环 ;G74 Z 向步进钻削 ;G75 X 向切槽;G76 切螺纹循环 ;G80 10 取消固定循环 ;G83 钻孔循环 ;G84 攻丝循环 ;G85 正面镗孔循环 ;G87 侧面钻孔循环 ;G88 侧面攻丝循环 ;G89 侧面镗孔循环 ;G90 01 (内外直径)切削循环 ;G92 切螺纹循环 ;G94 (台阶) 切削循环 ;G96 12 恒线速度控制 ;G97 恒线速度控制取消 ;G98 05 每分钟进给率;G99 每转进给率 代码解释G00 定位1. 格式 G00 X_ Z_ 这个命令把刀具从当前位置移动到命令指定的位置 (在绝对坐标方式下), 或者移动到某个距离处 (在增量坐标方式下)。 2. 非直线切削形式的定位 我们的定义是:采用独立的快速移动速率来决定每一个轴的位置。刀具路径不是直线,根据到达的顺序,机器轴依次停止在命令指定的位置。 3. 直线定位 刀具路径类似直线切削(G01) 那样,以最短的时间(不超过每一个轴快速移动速率)定位于要求的位置。 4. 举例 N10 G0 X100 Z65G01 直线插补1. 格式 G01 X(U)_ Z(W)_ F_ ;直线插补以直线方式和命令给定的移动速率从当前位置移动到命令位置。X, Z: 要求移动到的位置的绝对坐标值。U,W: 要求移动到的位置的增量坐标值。 2. 举例① 绝对坐标程序 G01 X50. Z75. F0.2 ;X100.; ② 增量坐标程序G01 U0.0 W-75. F0.2 ;U50. 圆弧插补 (G02, G03)1. 格式 G02(G03) X(U)__Z(W)__I__K__F__ ;G02(G03) X(U)__Z(W)__R__F__ ;G02 C 顺时钟 (CW)G03 C 逆时钟 (CCW)X, Z C在坐标系里的终点U, W C 起点与终点之间的距离I, K C 从起点到中心点的矢量 (半径值)R C 圆弧范围 (最大180 度)。2. 举例① 绝对坐标系程序G02 X100. Z90. I50. K0. F0.2或G02 X......>>
问题六:数控机床怎样进行编程序 数控编程方法
数控机床程序编制(又称数控机床编程)是指编程者(程序员或数控机床操作者)根据零件图样和工艺文件的要求,编制出可在数控机床上运行以完成规定加工任务的一系列指令的过程。具体来说,数控机床编程是由分析零件图样和工艺要求开始到程序检验合格为止的全部过程。
数控机床编程步骤
1.分析零件图样和工艺要求
分析零件图样和工艺要求的目的,是为了确定加工方法、制定加工计划,以及确认与生产组织有关的问题,此步骤的内容包括:
确定该零件应安排在哪类或哪台机床上进行加工。 采用何种装夹具或何种装卡位方法。 确定采用何种刀具或采用多少把刀进行加工。 确定加工路线,即选择对刀点、程序起点(又称加工起点,加工起点常与对刀点重合)、走刀路线 、程序终点(程序终点常与程序起点重合)。 确定切削深度和宽度、进给速度、主轴转速等切削参数。 确定加工过程中是否需要提供冷却液、是否需要换刀、何时换刀等。 2.数值计算
根据零件图样几何尺寸,计算零件轮廓数据,或根据零件图样和走刀路线,计算刀具中心(或刀尖)运行轨迹数据。数值计算的最终目的是为了获得数控机床编程所需要的所有相关位置坐标数据。
3.编写加工程序单
常用数控机床编程指令
一组有规定次序的代码符号,可以作为一个信息单元存贮、传递和操作。
坐标字:用来设定机床各坐标的位移量由坐标地址符及数字组成,一般以X、Y、Z、U、V、W等字母开头,后面紧跟“-”或“-”及一串数字。
准备功能字(简称G功能):
指定机床的运动方式,为数控系统的插补运算作准备由准备功能地址符“G”和两位数字所组成,G功能的代号已标准化,见表2-3;一些多功能机床,已有数字大于100的指令,见表2-4。常用G指令:坐标定位与插补;坐标平面选择;固定循环加工;刀具补偿;绝对坐标及增量坐标等。
辅助功能字:用于机床加工操作时的工艺性指令,以地址符M为首,其后跟二位数字,常用M指令:主轴的转向与启停;冷却液的开与停;程序停止等。
进给功能字:指定刀具相对工件的运动速度进给功能字以地址符“F”为首,后跟一串字代码,单位:mm/min(对数控车床还可为mm/r)三位数代码法:F后跟三位数字,第一位为进给速度的整数位数加“3”,后二位是进给速度的前二位有效数字。如1728mm/min指定为F717。二位数代码法:F后跟二位数字,规定了与00~99相对应的速度表,除00与99外,数字代码由01向98递增时,速度按等比关系上升,公比为1.12。一位数代码法:对速度档较少的机床F后跟一位数字,即0 ~9来对应十种预定的速度。直接指定法:在F后按照预定的单位直接写上要求的进给速度。
主轴速度功能字:指定主轴旋转速度以地址符S为首,后跟一串数字。单位:r/min,它与进给功能字的指定方法一样。
刀具功能字:用以选择替换的刀具以地址符T为首,其后一般跟二位数字,该数代表刀具的编号。
模态指令和非模态指令 G指令和M指令均有模态和非模态指令之分模态指令:也称续效指令,一经程序段中指定,便一直有效,直到出现同组另一指令或被其他指令取消时才失效。见表2-3、表2-6 N001 G91 G01 X10 Y10 Z-2 F150 M03 S1500; N002 X15; N003 G02 X20 Y20 I20 J0; N004 G90 G00 X0 Y0 Z100 M02; 非模态指令:非续效指令,仅在出现的程序段中有效,下一段程序需要时必须重写(如G04)。
在完成上述两个步骤之后,即可根据已确定的加工方案(......>>
问题七:数控编程怎么编整圆 G02\G03 X Y I J
编整圆的时候用I J
问题八:数控车床的编程方法是什么啊??? 手工编程是指从零件图纸分析、工艺处理、数值计算、编写程序单、直到程序校核等各步骤的数控编程工作均由人工完成的全过程。手工编程适合于编写进行点位加工或几何形状不太复杂的零件的加工程序,以及程序坐标计算较为简单、程序段不多、程序编制易于实现的场合。这种方法比较简单,容易掌握,适应性较强。手工编程方法是编制加工程序的基础,也是机床现场加工调试的主要方法,对机床操作人员来讲是必须掌握的基本功,其重要性是不容忽视的。自动编程是指在计算机及相应的软件系统的支持下,自动生成数控加工程序的过程。它充分发挥了计算机快速运算和存储的功能。其特点是采用简单、习惯的语言对加工对象的几何形状、加工工艺、切削参数及辅助信息等内容按规则进行描述,再由计算机自动地进行数值计算、刀具中心运动轨迹计算、后置处理,产生出零件加工程序单,并且对加工过程进行模拟。对于形状复杂,具有非圆曲线轮廓、三维曲面等零件编写加工程序,采用自动编程方法效率高,可靠性好。在编程过程中,程序编制人可及时检查程序是否正确,需要时可及时修改。由于使用计算机代替编程人员完成了繁琐的数值计算工作,并省去了书写程序单等工作量,因而可提高编程效率几十倍乃至上百倍,解决了手工编程无法解决的许多复杂零件的编程难题。
问题九:数控编程的步骤,具体的步骤是怎样的? 1、分析零件图 首先要分析零件的材料、形状、尺寸、精度、批量、毛坯形状和热处理要求等,以便确定该零件是否适合在数控机床上加工,或适合在哪种数控机床上加工,同时要明确浇灌能够的内容和要求。
2、工艺处理 在分析零件图的基础上进行工艺分析,确定零件的加工方法(如采用的工夹具、装夹定位方法等)、加工线路(如对刀点、进给路线)及切削用量(如主轴转速、进给速度和背吃刀量等)等工艺参数。
3、数值计算 耕根据零件图的几何尺寸、确定的工艺路线及设定的坐标系,计算零件粗、精加工运动的轨迹,得到刀珐数据。对于形状比较简单的零件(如由直线和圆弧组成的零件)的轮廓加工,要计算几何元素的起点、终点、圆弧的圆心、两几何元素的交点或切点的坐标值,如果数控装置无刀具补偿功能,还要计算刀具中心的运动轨迹坐标。对于形状比较复杂的零件(如由非圆曲线、曲面组成的零件),需要用直线段或圆弧段逼近,根据加工精度的要求计算出节点坐标值,这种数值计算要用计算机来完成。
4、编写加工程序单 根据加工路线、切削用量、刀具号码、刀具补偿量、机床辅助动作及刀具运动轨迹,按照数控系统使用的指令代码和程序段的格式编写零件加工的程序单,并校核上述两个步骤的内容,纠正其中的错误。
5、制作控制介质 把编制好的程序单上的内容记录在控制介质上,作为数控装置的输入信息。通过程序的手工输入或通信传输送入数控系统。
6、程序校验与首件试切 编写的程序和制备好的控制介质,必须经过校验和试刀才能正式使用。效验的方法是直接将控制介质上的内容输入到数控系统中让机床空转,一检验机床的运动轨迹是否正确。在有CRT图形显示的数控机床上,用模拟刀具与工件切削过程的方法进行检验更为方便,但这些方法只能检验运动是否正确,不能检验被加工零件的加工精度。因此,还需要进行零件的首件试切。当发现有加工误差时,分析误差产生的原因,找出问题所在,加以修正,直至达到零件图纸的要求。
问题十:数控车床怎样编程? 其实不管是什么系统,它们的编程都是差不多的。下面有格式,只要学会他编程就会了。 G代码 组别 解释 ; G00 01 定位 (快速移动) ; G01 直线切削 ; . G02 顺时针切圆弧 (CW,顺时钟) ; G03 逆时针切圆弧 (CCW,逆时钟) ; G04 00 暂停 (Dwell) ; G09 停于精确的位置 ; G20 06 英制输入 ; G21 公制输入 ; G22 04 内部行程限位 有效 ; G23 内部行程限位 无效 ; G27 00 检查参考点返回 ; G28 参考点返回 ; G29 从参考点返回 ; G30 回到第二参考点 ;G32 01 切螺纹 G40 07 取消刀尖半径偏置 ;G41 刀尖半径偏置 (左侧) ;G42 刀尖半径偏置 (右侧) ;G50 00 修改工件坐标;设置主轴最大的 RPM ;G52 设置局部坐标系 ;G53 选择机床坐标系 ;G70 00 精加工循环 ;G71 内外径粗切循环 ;G72 台阶粗切循环 ;G73 成形重复循环 ;G74 Z 向步进钻削 ;G75 X 向切槽;G76 切螺纹循环 ;G80 10 取消固定循环 ;G83 钻孔循环 ;G84 攻丝循环 ;G85 正面镗孔循环 ;G87 侧面钻孔循环 ;G88 侧面攻丝循环 ;G89 侧面镗孔循环 ;G90 01 (内外直径)切削循环 ;G92 切螺纹循环 ;G94 (台阶) 切削循环 ;G96 12 恒线速度控制 ;
G97 恒线速度控制取消 ;G98 05 每分钟进给率;G99 每转进给率
代码解释
G00 定位
1. 格式 G00 X_ Z_ 这个命令把刀具从当前位置移动到命令指定的位置 (在绝对坐标方式下), 或者移动到某个距离处 (在增量坐标方式下)。 2. 非直线切削形式的定位 我们的定义是:采用独立的快速移动速率来决定每一个轴的位置。刀具路径不是直线,根据到达的顺序,机器轴依次停止在命令指定的位置。 3. 直线定位 刀具路径类似直线切削(G01) 那样,以最短的时间(不超过每一个轴快速移动速率)定位于要求的位置。 4. 举例 N10 G0 X100 Z65
G01 直线插补
1. 格式 G01 X(U)_ Z(W)_ F_ ;直线插补以直线方式和命令给定的移动速率从当前位置移动到命令位置。X, Z: 要求移动到的位置的绝对坐标值。U,W: 要求移动到的位置的增量坐标值。
2. 举例① 绝对坐标程序 G01 X50. Z75. F0.2 ;X100.; ② 增量坐标程序G01 U0.0 W-75. F0.2 ;U50.
圆弧插补 (G02, G03)
1. 格式 G02(G03) X(U)__Z(W)__I__K__F__ ;G02(G03) X(U)__Z(W)__R__F__ ;
G02 C 顺时钟 (CW)G03 C 逆时钟 (CCW)X, Z C在坐标系里的终点U, W C 起点与终点之间的距离I, K C 从起点到中心点的矢量 (半径值)R C 圆弧范围 (最大180 度)。2. 举例① 绝对坐标系程序G02 X100. Z90. I50. K0. F0.2或G02 X100. Z90. R50. F02;② 增量坐标系程序G02 U20. W-30. I50. K0. F0.2;或G02 U20. W-30. R50. F0.2;
......>>
H. 数控车床编程实例带图的
G99(每转进给)
G0X200Z100(快速移动到安全位)
T0101(换1号外圆刀,执行1号刀补)
M03S500(开启主轴正转,速度500R/MIN)
G0X112Z2(快速接近工件毛坯)
G71U3R0.5F0.2(G71轴向精车循环加工,U3每次吃刀3MM单边,退刀0.5MM,速度0.2MM/R)
G71P1Q2U0W0(P1程序开始阶段,Q2程序结束阶段,U0——X轴不留精加工余量,W0——Z轴不留精加工余量)
N1G0X30(循环开始以后的第一阶段)
G1Z-50
X90
Z-70
X110
N2Z-140(循环结束的最后一阶段)
G0X200Z100(快速移动至安全换刀位)
T0202(换2号刀螺牙刀,执行2号刀补)
G0X200Z100S300(快速移动至安全位,转速改为300R/MIN)
X30Z4(快速定位至螺牙循环开始位置)
G92X29.8Z-48F1.5(车螺牙,X轴牙底径29.8,Z牙长48MM,牙距1.5MM)
X29.6
X29.4
X29.2
X29
X28.8
X28.6
X28.4
X28.3
X28.2
X28.1
X28.05
G0X200Z100(快速移动至安全换刀位置)
T0303(换3号割刀,执行3号刀补)
G0X200Z100S200(快速定位,转速200R/MIN)
X110Z-84(移动至割槽循环开始位置)
G75R0.5F0.08(G75割槽循环,R——每次退刀0.5MM,F——每转进给0.08MM)
G75X60Z-120P6000Q4000(槽底径60MM,Z轴最大深度120MM,P——每次切入6MM,Z轴移动量)
M09(关水泵)
G0X200Z100M05(快速移动至换刀安全位,关闭主轴)
T0101(换1号刀)
M30(程序结束)