导航:首页 > 编程语言 > python实验技巧

python实验技巧

发布时间:2023-09-05 20:29:53

python编程常用技巧

清理用户输入



对输入的的值进行清理处理,是常见的程序要求。比如要做大小写转化、要验证输入字符的注入,通常可以通过写正则用Regex来做专项任务。但是对于复杂的情况,可以用一些技巧,比如下面:



user_input = "This string has some whitespaces... "



character_map = {



ord(' ') : ' ',



ord(' ') : ' ',



ord(' ') : None



}



在此示例中,可以看到空格字符" "和" "都被替换为空格,而 " "被删除。



这是一个简单的示例,我们还可以使用unicodedata包和combinin()函数来生成大的映射表,以生成映射来替换字符串。



提示用户输入



命令行工具或脚本需要输入用户名和密码才能操作。要用这个功能,一个很有用的技巧是使用getpass模块:



import getpass



user = getpass.getuser()



password = getpass.getpass()



这三行代码就可以让我们优雅的交互提醒用户输入输入密码并捕获当前的系统用户和输入的密码,而且输入密码时候会自动屏蔽显示,以防止被人窃取。



查找字符串频率



如果需要使用查找类似局伍此于某些输入字符串的单词,可以使用difflib来实现:



import difflib



difflib.get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'], n=2)



# 返回['apple', 'ape']



difflib.get_close_matches会查找相似度最匹配的字串。本例中,第一个参数与第二个参数匹配。提供可选参数n,该参数指定要返回的最大匹配数,以及参数cutoff(默认值为0.6)设置为thr确定匹配字符串的分数。



关于Python编程常用技巧,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以橘铅为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他桐迅文章进行学习。

㈡ 可以让你快速用Python进行数据分析的10个小技巧

一些小提示和小技巧可能是非常有用的,特别是在编程领域。有时候使用一点点黑客技术,既可以节省时间,还可能挽救“生命”。

一个小小的快捷方式或附加组件有时真是天赐之物,并且可以成为真正的生产力助推器。所以,这里有一些小提示和小技巧,有些可能是新的,但我相信在下一个数据分析项目中会让你非常方便。

Pandas中数据框数据的Profiling过程

Profiling(分析器)是一个帮助我们理解数据的过程,而Pandas Profiling是一个Python包,它可以简单快速地对Pandas 的数据框数据进行 探索 性数据分析。

Pandas中df.describe()和df.info()函数可以实现EDA过程第一步。但是,它们只提供了对数据非常基本的概述,对于大型数据集没有太大帮助。 而Pandas中的Profiling功能简单通过一行代码就能显示大量信息,且在交互式HTML报告中也是如此。

对于给定的数据集,Pandas中的profiling包计算了以下统计信息:

由Pandas Profiling包计算出的统计信息包括直方图、众数、相关系数、分位数、描述统计量、其他信息——类型、单一变量值、缺失值等。

安装

用pip安装或者用conda安装

pip install pandas-profiling

conda install -c anaconda pandas-profiling

用法

下面代码是用很久以前的泰坦尼克数据集来演示多功能Python分析器的结果。

#importing the necessary packages

import pandas as pd

import pandas_profiling

df = pd.read_csv('titanic/train.csv')

pandas_profiling.ProfileReport(df)

一行代码就能实现在Jupyter Notebook中显示完整的数据分析报告,该报告非常详细,且包含了必要的图表信息。

还可以使用以下代码将报告导出到交互式HTML文件中。

profile = pandas_profiling.ProfileReport(df)

profile.to_file(outputfile="Titanic data profiling.html")

Pandas实现交互式作图

Pandas有一个内置的.plot()函数作为DataFrame类的一部分。但是,使用此功能呈现的可视化不是交互式的,这使得它没那么吸引人。同样,使用pandas.DataFrame.plot()函数绘制图表也不能实现交互。 如果我们需要在不对代码进行重大修改的情况下用Pandas绘制交互式图表怎么办呢?这个时候就可以用Cufflinks库来实现。

Cufflinks库可以将有强大功能的plotly和拥有灵活性的pandas结合在一起,非常便于绘图。下面就来看在pandas中如何安装和使用Cufflinks库。

安装

pip install plotly

# Plotly is a pre-requisite before installing cufflinks

pip install cufflinks

用法

#importing Pandas

import pandas as pd

#importing plotly and cufflinks in offline mode

import cufflinks as cf

import plotly.offline

cf.go_offline()

cf.set_config_file(offline=False, world_readable=True)

是时候展示泰坦尼克号数据集的魔力了。

df.iplot()

df.iplot() vs df.plot()

右侧的可视化显示了静态图表,而左侧图表是交互式的,更详细,并且所有这些在语法上都没有任何重大更改。

Magic命令

Magic命令是Jupyter notebook中的一组便捷功能,旨在解决标准数据分析中的一些常见问题。使用命令%lsmagic可以看到所有的可用命令。

所有可用的Magic命令列表

Magic命令有两种:行magic命令(line magics),以单个%字符为前缀,在单行输入操作;单元magic命令(cell magics),以双%%字符为前缀,可以在多行输入操作。如果设置为1,则不用键入%即可调用Magic函数。

接下来看一些在常见数据分析任务中可能用到的命令:

% pastebin

%pastebin将代码上传到Pastebin并返回url。Pastebin是一个在线内容托管服务,可以存储纯文本,如源代码片段,然后通过url可以与其他人共享。事实上,Github gist也类似于pastebin,只是有版本控制。

在file.py文件中写一个包含以下内容的python脚本,并试着运行看看结果。

#file.py

def foo(x):

return x

在Jupyter Notebook中使用%pastebin生成一个pastebin url。

%matplotlib notebook

函数用于在Jupyter notebook中呈现静态matplotlib图。用notebook替换inline,可以轻松获得可缩放和可调整大小的绘图。但记得这个函数要在导入matplotlib库之前调用。

%run

用%run函数在notebook中运行一个python脚本试试。

%run file.py

%%writefile

%% writefile是将单元格内容写入文件中。以下代码将脚本写入名为foo.py的文件并保存在当前目录中。

%%latex

%%latex函数将单元格内容以LaTeX形式呈现。此函数对于在单元格中编写数学公式和方程很有用。

查找并解决错误

交互式调试器也是一个神奇的功能,我把它单独定义了一类。如果在运行代码单元时出现异常,请在新行中键入%debug并运行它。 这将打开一个交互式调试环境,它能直接定位到发生异常的位置。还可以检查程序中分配的变量值,并在此处执行操作。退出调试器单击q即可。

Printing也有小技巧

如果您想生成美观的数据结构,pprint是首选。它在打印字典数据或JSON数据时特别有用。接下来看一个使用print和pprint来显示输出的示例。

让你的笔记脱颖而出

我们可以在您的Jupyter notebook中使用警示框/注释框来突出显示重要内容或其他需要突出的内容。注释的颜色取决于指定的警报类型。只需在需要突出显示的单元格中添加以下任一代码或所有代码即可。

蓝色警示框:信息提示

<p class="alert alert-block alert-info">

<b>Tip:</b> Use blue boxes (alert-info) for tips and notes.

If it’s a note, you don’t have to include the word “Note”.

</p>

黄色警示框:警告

<p class="alert alert-block alert-warning">

<b>Example:</b> Yellow Boxes are generally used to include additional examples or mathematical formulas.

</p>

绿色警示框:成功

<p class="alert alert-block alert-success">

Use green box only when necessary like to display links to related content.

</p>

红色警示框:高危

<p class="alert alert-block alert-danger">

It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc.

</p>

打印单元格所有代码的输出结果

假如有一个Jupyter Notebook的单元格,其中包含以下代码行:

In [1]: 10+5

11+6

Out [1]: 17

单元格的正常属性是只打印最后一个输出,而对于其他输出,我们需要添加print()函数。然而通过在notebook顶部添加以下代码段可以一次打印所有输出。

添加代码后所有的输出结果就会一个接一个地打印出来。

In [1]: 10+5

11+6

12+7

Out [1]: 15

Out [1]: 17

Out [1]: 19

恢复原始设置:

InteractiveShell.ast_node_interactivity = "last_expr"

使用'i'选项运行python脚本

从命令行运行python脚本的典型方法是:python hello.py。但是,如果在运行相同的脚本时添加-i,例如python -i hello.py,就能提供更多优势。接下来看看结果如何。

首先,即使程序结束,python也不会退出解释器。因此,我们可以检查变量的值和程序中定义的函数的正确性。

其次,我们可以轻松地调用python调试器,因为我们仍然在解释器中:

import pdb

pdb.pm()

这能定位异常发生的位置,然后我们可以处理异常代码。

自动评论代码

Ctrl / Cmd + /自动注释单元格中的选定行,再次命中组合将取消注释相同的代码行。

删除容易恢复难

你有没有意外删除过Jupyter notebook中的单元格?如果答案是肯定的,那么可以掌握这个撤消删除操作的快捷方式。

如果您删除了单元格的内容,可以通过按CTRL / CMD + Z轻松恢复它。

如果需要恢复整个已删除的单元格,请按ESC + Z或EDIT>撤消删除单元格。

结论

在本文中,我列出了使用Python和Jupyter notebook时收集的一些小提示。我相信它们会对你有用,能让你有所收获,从而实现轻松编码!

阅读全文

与python实验技巧相关的资料

热点内容
java的webxml配置 浏览:962
如何封包远程注入服务器 浏览:864
监测机构资金动向源码 浏览:967
android状态栏字体50 浏览:767
python如何判断文件后缀 浏览:126
龙空app哪里下 浏览:348
阿里云服务器搭建网盘 浏览:689
京东软件程序员 浏览:805
php游戏服务器框架 浏览:391
导航开发算法 浏览:430
为什么30岁还想转行程序员 浏览:380
推荐算法的使用 浏览:40
javaswing表格 浏览:470
sql和python处理excel 浏览:107
家用材料制作解压玩具 浏览:912
c盘解压失败可以用空间吗 浏览:466
3d循环音乐哪个app好 浏览:771
压缩文件zip怎么解压不了 浏览:393
如何看苹果appstore软件是否收费 浏览:463
android发送字符串 浏览:14