‘壹’ 怎么通俗理解python epoll
首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象。不管是文件,还是套接字,还是管道,我们都可以把他们看作流。
现在我们来讨论I/O的操作,通过read,我们可以从流中读入数据;通过write,我们可以往流写入数据。现在假定一个情形,我们需要从流中读数据,但是流中还没有数据,(典型的例子为,客户端要从socket读如数据,但是服务器还没有把数据传回来),这时候该怎么办?
阻塞:阻塞是个什么概念呢?比如某个时候你在等快递,但是你不知道快递什么时候过来,而且你没有别的事可以干(或者说接下来的事要等快递来了才能做);那么你可以去睡觉了,因为你知道快递把货送来时一定会给你打个电话(假定一定能叫醒你)。
非阻塞忙轮询:接着上面等快递的例子,如果用忙轮询的方法,那么你需要知道快递员的手机号,然后每分钟给他挂个电话:“你到了没?”
很明显一般人不会用第二种做法,不仅显很无脑,浪费话费不说,还占用了快递员大量的时间。
大部分程序也不会用第二种做法,因为第一种方法经济而简单,经济是指消耗很少的CPU时间,如果线程睡眠了,就掉出了系统的调度队列,暂时不会去瓜分CPU宝贵的时间片了。
为了了解阻塞是如何进行的,我们来讨论缓冲区,以及内核缓冲区,最终把I/O事件解释清楚。缓冲区的引入是为了减少频繁I/O操作而引起频繁的系统调用(你知道它很慢的),当你操作一个流时,更多的是以缓冲区为单位进行操作,这是相对于用户空间而言。对于内核来说,也需要缓冲区。
假设有一个管道,进程A为管道的写入方,B为管道的读出方。一开始内核缓冲区是空的,B作为读出方,被阻塞着。然后首先A往管道写入,这时候内核缓冲区由空的状态变到非空状态,内核就会产生一个事件告诉B该醒来了,这个事件姑且称之为“缓冲区非空”。但是“,缓冲区非空”事件通知B后,B却还没有读出数据;且内核许诺了不能把写入管道中的数据丢掉这个时候,A写入的数据会滞留在内核缓冲区中,如果内核也缓冲区满了,B仍未开始读数据,最终内核缓冲区会被填满,这个时候会产生一个I/O事件,告诉进程A,你该等等(阻塞)了,我们把这个事件定义为“缓冲区满”。后来B终于开始读数据了,于是内核的缓冲区空了出来,这时候内核会告诉A,内核缓冲区有空位了,你可以从长眠中醒来了,继续写数据了,我们把这个事件叫做“缓冲区非满”。也许事件“缓冲区非满“已经通知了A,但是A也没有数据写入了,而B继续读出数据,知道内核缓冲区空了。这个时候内核就告诉B,你需要阻塞了!,我们把这个时间定为“缓冲区空”。
这四个情形涵盖了四个I/O事件,缓冲区满,缓冲区空,缓冲区非空,缓冲区非满(注都是说的内核缓冲区,且这四个术语都是我生造的,仅为解释其原理而造)。这四个I/O事件是进行阻塞同步的根本。(如果不能理解“同步”是什么概念,请学习操作系统的锁,信号量,条件变量等任务同步方面的相关知识)。
然后我们来说说阻塞I/O的缺点:阻塞I/O模式下,一个线程只能处理一个流的I/O事件。如果想要同时处理多个流,要么多进程(fork),要么多线程(pthread_create),很不幸这两种方法效率都不高。
现在我们再来考虑一下”非阻塞忙轮询“的I/O方式,我们发现我们可以同时处理多个流了(把一个流从阻塞模式切换到非阻塞模式再此不予讨论):
[java]view plain
whiletrue{
active_stream[]=epoll_wait(epollfd)
foriinactive_stream[]{
readorwritetill
}
}
[java]view plain
whiletrue{
active_stream[]=epoll_wait(epollfd)
foriinactive_stream[]{
readorwritetill
}
}
‘贰’ python web开发 该用什么框架
Djang Python Web应用开发框架
Django是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,视图V和模版T。它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。
Flask:一个用Python编写的轻量级Web应用框架
Flask是一个使用 Python 编写的轻量级 Web 应用框架。其 WSGI 工具箱采用 Werkzeug ,模板引擎则使用 Jinja2
。Flask使用 BSD 授权。
Flask也被称为 “microframework” ,因为它使用简单的核心,用 extension
增加其他功能。Flask没有默认使用的数据库、窗体验证工具。
Tornado:异步非阻塞IO的Python Web框架
Tornado是一种 Web 服务器软件的开源版本。Tornado 和主流Web 服务器框架(包括大多数 Python
的框架)有着明显的区别:它是非阻塞式服务器,而且速度相当快。
得利于其非阻塞的方式和对epoll的运用,Tornado 每秒可以处理数以千计的连接,因此 Tornado 是实时 Web 服务的一个 理想框架。
‘叁’ 有没有人写过python的一秒3000个并发请求的服务端
有个国产的web框架:eurasia, 业界大牛 沈老大 写的,貌似用了stackless python
自己写了一个tcp的server,epoll based,测过并发60k,不是web框架,没测过每秒请求数。
python搭tcp/web server都很快,现成的web框架多,裸tcp的框架少