A. 单片机制作呼吸灯的C语言程序怎样编写
#include<reg51.h>
sbit LED0=P0^0;
sbit wei=P1^1;
sbit an=P1^0;
sbit lcden=P1^7;
sbit dianzhen=P1^3;
sbit leden=P1^2;
void Delay(unsigned int t);
void main (void)
{
unsigned int CYCLE=600,PWM_LOW=0;//定义周期并赋值
lcden=0;
P0=0x00;
dianzhen=0;
P0=0xff;
wei=0;
an=0;
while (1) //主循环
{
LED0=1;
Delay(150000); //特意加延时,可以看到熄灭的过程
for(PWM_LOW=1;PWM_LOW<CYCLE;PWM_LOW++)
{
LED0=0;
Delay(PWM_LOW);
LED0=1;
Delay(CYCLE-PWM_LOW);
}
for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--)
{
LED0=0;
Delay(PWM_LOW);
LED0=1;
Delay(CYCLE-PWM_LOW);
}
}
}
void Delay(unsigned int t)
{
while(t--);
}
B. 单片机间隔点亮一led灯的C语言程序
以下是一个单片机间隔点亮一LED灯的C语言程序,以8051单片机为例:
c
Copy code
#include
//包含了AT89C51的寄存器定义
void delay(unsigned int xms) //延时函数,xms为要延时的毫秒数
{
unsigned int i,j;
for(i=xms;i>0;i--)
for(j=112;j>0;j--);
}
void main()
{
P1=0x00; //将P1口全部置为0,防止其它引脚影响
while(1)
{
P1=0xff; //点亮P1口第0个引脚上的LED灯友念行,0xff为二进制的11111111
delay(1000); //延时1秒
P1=0x00; //将P1口全部置好哗为0,熄灭LED灯
delay(1000); //延时1秒
}
}
上述程序的作用是在单片机的P1口上间隔高迟点亮一盏LED灯,每隔1秒钟灯的状态会发生一次变化,即由点亮状态变为熄灭状态,再由熄灭状态变为点亮状态。
C. 用c语言编写单片机流水灯程序,(8个发光二极管从左至右循环点亮)
#include<reg51.h>
voiddelay(void)
{
unsignedinti,j;
for(i=0;i<200;i++)
for(j=0;j<1000;j++)
;
}
voidmain(void)
{
while(1)
{
P3=0xfe;//第一个灯亮
delay();//延时
P3=0xfd;//第二个灯亮
delay();
P3=0xfb;//第三个灯亮
delay();
P3=0xf7;//第四个灯亮
delay();
P3=0xef;//第五个灯亮
delay();
P3=0xdf;//第六个灯亮
delay();
P3=0xbf;//第七个灯亮
delay();
P3=0x7f;//第八个灯亮
delay();
}
}
(3)单片机c语言编程例扩展阅读
单片机C语言16种方式流水灯
voidmain()
{
while(1)
{
P1=0xfe;//点亮第一个发光管
Delay(5000);
P1=0xfd;//点亮第二个发光管
Delay(5000);
P1=0xfb;
Delay(5000);
P1=0xf7;
Delay(5000);
P1=0xef;
Delay(5000);
P1=0xdf;
Delay(5000);
P1=0xbf;
Delay(5000);
P1=0x7f;//点亮第八个发光管
}
}
D. 求 单片机简单的C语言程序例子(越多越好)
我前几天刚在网上看到的,不知道对你有没有用》
1. 闪烁灯
1. 实验任务
如图4.1.1所示:在P1.0端口上接一个发光二极管L1,使L1在不停地一亮一灭,一亮一灭的时间间隔为0.2秒。
2. 电路原理图
图4.1.1
3. 系统板上硬件连线
把“单片机系统”区域中的P1.0端口用导线连接到“八路发光二极管指示模块”区域中的L1端口上。
4. 程序设计内容
(1). 延时程序的设计方法
作为单片机的指令的执行的时间是很短,数量大微秒级,因此,我们要求的闪烁时间间隔为0.2秒,相对于微秒来说,相差太大,所以我们在执行某一指令时,插入延时程序,来达到我们的要求,但这样的延时程序是如何设计呢?下面具体介绍其原理:
如图4.1.1所示的石英晶体为12MHz,因此,1个机器周期为1微秒
机器周期 微秒
MOV R6,#20 2个机器周期 2
D1: MOV R7,#248 2个机器周期 2 2+2×248=498 20×
DJNZ R7,$ 2个机器周期 2×248 498
DJNZ R6,D1 2个机器周期 2×20=40 10002
因此,上面的延时程序时间为10.002ms。
由以上可知,当R6=10、R7=248时,延时5ms,R6=20、R7=248时,延时10ms,以此为基本的计时单位。如本实验要求0.2秒=200ms,10ms×R5=200ms,则R5=20,延时子程序如下:
DELAY: MOV R5,#20D1: MOV R6,#20D2: MOV R7,#248DJNZ R7,$DJNZ R6,D2DJNZ R5,D1RET
(2). 输出控制
如图1所示,当P1.0端口输出高电平,即P1.0=1时,根据发光二极管的单向导电性可知,这时发光二极管L1熄灭;当P1.0端口输出低电平,即P1.0=0时,发光二极管L1亮;我们可以使用SETB P1.0指令使P1.0端口输出高电平,使用CLR P1.0指令使P1.0端口输出低电平。
5. 程序框图
如图4.1.2所示
图4.1.2
6. 汇编源程序ORG 0START: CLR P1.0LCALL DELAYSETB P1.0LCALL DELAYLJMP STARTDELAY: MOV R5,#20 ;延时子程序,延时0.2秒D1: MOV R6,#20D2: MOV R7,#248DJNZ R7,$DJNZ R6,D2DJNZ R5,D1RETEND7. C语言源程序#include <AT89X51.H>sbit L1=P1^0;void delay02s(void) //延时0.2秒子程序{unsigned char i,j,k;for(i=20;i>0;i--)for(j=20;j>0;j--)for(k=248;k>0;k--);}void main(void){while(1){L1=0;delay02s();L1=1;delay02s();}}
2. 模拟开关灯
1. 实验任务
如图4.2.1所示,监视开关K1(接在P3.0端口上),用发光二极管L1(接在单片机P1.0端口上)显示开关状态,如果开关合上,L1亮,开关打开,L1熄灭。
2. 电路原理图
图4.2.1
3. 系统板上硬件连线
(1). 把“单片机系统”区域中的P1.0端口用导线连接到“八路发光二极管指示模块”区域中的L1端口上;
(2). 把“单片机系统”区域中的P3.0端口用导线连接到“四路拨动开关”区域中的K1端口上;
4. 程序设计内容
(1). 开关状态的检测过程
单片机对开关状态的检测相对于单片机来说,是从单片机的P3.0端口输入信号,而输入的信号只有高电平和低电平两种,当拨开开关K1拨上去,即输入高电平,相当开关断开,当拨动开关K1拨下去,即输入低电平,相当开关闭合。单片机可以采用JB BIT,REL或者是JNB BIT,REL指令来完成对开关状态的检测即可。
(2). 输出控制
如图3所示,当P1.0端口输出高电平,即P1.0=1时,根据发光二极管的单向导电性可知,这时发光二极管L1熄灭;当P1.0端口输出低电平,即P1.0=0时,发光二极管L1亮;我们可以使用SETB P1.0指令使P1.0端口输出高电平,使用CLR P1.0指令使P1.0端口输出低电平。
5. 程序框图
图4.2.2
6. 汇编源程序 ORG 00HSTART: JB P3.0,LIGCLR P1.0SJMP STARTLIG: SETB P1.0SJMP STARTEND
7. C语言源程序#include <AT89X51.H>sbit K1=P3^0;sbit L1=P1^0;void main(void){while(1){if(K1==0){L1=0; //灯亮}else{L1=1; //灯灭}}}
3. 多路开关状态指示
1. 实验任务
如图4.3.1所示,AT89S51单片机的P1.0-P1.3接四个发光二极管L1-L4,P1.4-P1.7接了四个开关K1-K4,编程将开关的状态反映到发光二极管上。(开关闭合,对应的灯亮,开关断开,对应的灯灭)。
2. 电路原理图
图4.3.1
3. 系统板上硬件连线
(1. 把“单片机系统”区域中的P1.0-P1.3用导线连接到“八路发光二极管指示模块”区域中的L1-L4端口上;
(2. 把“单片机系统”区域中的P1.4-P1.7用导线连接到“四路拨动开关”区域中的K1-K4端口上;
4. 程序设计内容
(1. 开关状态检测
对于开关状态检测,相对单片机来说,是输入关系,我们可轮流检测每个开关状态,根据每个开关的状态让相应的发光二极管指示,可以采用JB P1.X,REL或JNB P1.X,REL指令来完成;也可以一次性检测四路开关状态,然后让其指示,可以采用MOV A,P1指令一次把P1端口的状态全部读入,然后取高4位的状态来指示。
(2. 输出控制
根据开关的状态,由发光二极管L1-L4来指示,我们可以用SETB P1.X和CLR P1.X指令来完成,也可以采用MOV P1,#1111XXXXB方法一次指示。
5. 程序框图
读P1口数据到ACC中
ACC内容右移4次
ACC内容与F0H相或
ACC内容送入P1口
<![endif]-->
图4.3.2
6. 方法一(汇编源程序)ORG 00HSTART: MOV A,P1ANL A,#0F0HRR ARR ARR ARR AORl A,#0F0HMOV P1,ASJMP STARTEND7. 方法一(C语言源程序)#include <AT89X51.H>unsigned char temp;void main(void){while(1){temp=P1>>4;temp=temp | 0xf0;P1=temp;}}8. 方法二(汇编源程序)ORG 00HSTART: JB P1.4,NEXT1CLR P1.0SJMP NEX1NEXT1: SETB P1.0NEX1: JB P1.5,NEXT2CLR P1.1SJMP NEX2NEXT2: SETB P1.1NEX2: JB P1.6,NEXT3CLR P1.2SJMP NEX3NEXT3: SETB P1.2NEX3: JB P1.7,NEXT4CLR P1.3SJMP NEX4NEXT4: SETB P1.3NEX4: SJMP STARTEND9. 方法二(C语言源程序)#include <AT89X51.H>void main(void){while(1){if(P1_4==0){P1_0=0;}else{P1_0=1;}if(P1_5==0){P1_1=0;}else{P1_1=1;}if(P1_6==0){P1_2=0;}else{P1_2=1;}if(P1_7==0){P1_3=0;}else{P1_3=1;}}}
先给你,传不上 太多了
E. 用C语言编写一个单片机控制LED灯闪烁变化的编程 急用!!!!!!!!!
C语言实现LED灯闪烁控制配套51单片机开发板。
#include //包含单片机寄存器的头文件
/****************************************
函数功能:延时一段时间
*****************************************/
void delay(void) //两个void意思分别为无需返回值,没有参数传递。
{
unsigned int i; //定义无符号整数,最大取值范围65535。
for(i=0;i<20000;i++) //做20000次空循环。
; //什么也不做,等待一个机器周期。
}
/*******************************************************
函数功能:主函数 (C语言规定必须有也只能有1个主函数)。
********************************************************/
void main(void)
{
while(1) //无限循环。
{
P0=0xfe; //P1=1111 1110B, P0.0输出低电平。
delay(); //延时一段时间。
P0=0xff; //P1=1111 1111B, P0.0输出高电平。
delay(); //延时一段时间。
}
}
单片机驱动LED灯的源程序:
#include<reg52.h> //头文件。
#define uint unsigned int
#define uchar unsigned char
sbit LED1=P1^7; //位定义。
void delay_ms(uint);//mS级带参数延时函数。
void main()
{
while(1)
{
LED1=0;
delay_ms(1000);
LED1=1;
delay_ms(1000);
}
}
void delay_ms(uint z) //延时子程序
{
uint x,y;
for(x=z;x>0;x--)
for(y=110;y>0;y--);
}
(5)单片机c语言编程例扩展阅读:
单片机应用分类:
通用型:
这是按单片机(Microcontrollers)适用范围来区分的。例如,80C51式通用型单片机,它不是为某种专门用途设计的;专用型单片机是针对一类产品甚至某一个产品设计生产的,例如为了满足电子体温计的要求,在片内集成ADC接口等功能的温度测量控制电路。
总线型:
这是按单片机(Microcontrollers)是否提供并行总线来区分的。总线型单片机普遍设置有并行地址总线、 数据总线、控制总线,这些引脚用以扩展并行外围器件都可通过串行口与单片机连接。
另外,许多单片机已把所需要的外围器件及外设接口集成一片内,因此在许多情况下可以不要并行扩展总线,大大减省封装成本和芯片体积,这类单片机称为非总线型单片机。
控制型:
这是按照单片机(Microcontrollers)大致应用的领域进行区分的。一般而言,工控型寻址范围大,运算能力强;用于家电的单片机多为专用型。
通常是小封装、低价格,外围器件和外设接口集成度高。 显然,上述分类并不是惟一的和严格的。例如,80C51类单片机既是通用型又是总线型,还可以作工控用。
参考资料来源:网络-单片机