Ⅰ 为什么大数据用python
Python 已经成为较受欢迎的程序设计语言之一。自从2004年以后,python的使用率呈线性增长。2011年1月,它被TIOBE编程语言排行榜评为2010年度语言。由于Python语言的简洁性、易读性以及可扩展性,在国外用Python做科学计算的研究机构日益增多,一些知名大学已经采用Python来教授程序设计课程。
数据就是资产。大数据工程师是现在十分火热、高薪的职位。做大数据开发和分析不仅要用到java,Python也是较重要的语言。
那么,今天我们就来分析一下,Python之于大数据的意义和作用。
相关推荐:《Python入门教程》
什么是大数据?
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
为什么是python大数据?
从大数据的网络介绍上看到,大数据想要成为信息资产,需要有两步,一是数据怎么来,二是数据处理。
数据怎么来:
在数据怎么来这个问题上,数据挖掘无疑是很多公司或者个人的优选,毕竟大部分公司或者个人是没有能力产生这么多数据的,只能是挖掘互联网上的相关数据。
网络爬虫是Python的传统强势领域,较流行的爬虫框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能够独当一面的类库。
当然,网络爬虫并不仅仅只是打开网页,解析HTML怎么简单。高效的爬虫要能够支持大量灵活的并发操作,常常要能够同时几千甚至上万个网页同时抓取,传统的线程池方式资源浪费比较大,线程数上千之后系统资源基本上就全浪费在线程调度上了。
Python由于能够很好的支持协程(Coroutine)操作,基于此发展起来很多并发库,如Gevent,Eventlet,还有Celery之类的分布式任务框架。被认为是比AMQP更高效的ZeroMQ也是较早就提供了Python版本。有了对高并发的支持,网络爬虫才真正可以达到大数据规模。
数据处理:
有了大数据,那么也需要处理,才能找到适合自己的数据。而在数据处理方向,Python也是数据科学家较喜欢的语言之一,这是因为Python本身就是一门工程性语言,数据科学家用Python实现的算法,可以直接用在产品中,这对于大数据初创公司节省成本是非常有帮助的。
正是因为这些原因,才让python语言成为很多公司处理大数据的优选。加之python本身具有简单、易学、库多等原因,让越来越多的人选择转行python开发。
Ⅱ 计算机语言排行是怎样的什么是最好的语言
计算机语言排行是Python、C语言、Java、C++、C#。
1、Python
Python的历史可以追溯到1989年,因其高度可读的代码而深受其粉丝的喜爱。许多程序员认为这是最简单的语言开始。
4、C++
C++仍然是一门很重要的编程语言,其通用、快速备受欢迎,哪些在C++方面保持专业水平的人可能会拿到年薪9万到10万美元之间的职位。
C++是C语言的继承,它既可以进行C语言的过程化程序设计,又可以进行以抽象数据类型为特点的基于对象的程序设计,还可以进行以继承和多态为特点的面向对象的程序设计。
5、C#
C#是微软公司发布的一种面向对象的、运行于.NET Framework之上的高级程序设计语言。C#看起来与Java有着惊人的相似;它包括了诸如单一继承、接口、与Java几乎同样的语法和编译成中间代码再运行的过程。
但是C#与Java有着明显的不同,它借鉴了Delphi的一个特点,与COM(组件对象模型)是直接集成的,而且它是微软公司 .NET windows网络框架的主角。
Ⅲ 网页编程语言排行榜
--------- WEB后台编程
asp
php
jsp
cgi
--------- 前台客户端
html
css
javascript
xhtml
根据常用度排的`