1. 求python支持向量机多元回归预测代码
Python 代码示例,使用 scikit-learn 库中的 SVR 类实现多元回归预测:
from sklearn.svm import SVR
import numpy as np
# 构造训练数据
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([1, 2, 3])
# 创建模型并训练
clf = SVR(kernel='linear')
clf.fit(X, y)
# 进行预测
predictions = clf.predict(X)
print(predictions)
请注意,以上代码仅供参考,可能需要根据实际情况进行修改。
2. 人工智能用的编程语言是哪些
人工智能是一种未来性的技术,目前正在致力于研究自己的一套工具。一系列的进展在过去的几年中发生了:无事故驾驶超过300000英里并在三个州合法行驶迎来了自动驾驶的一个里程碑;IBM Waston击败了Jeopardy两届冠军;统计学习技术从对消费者兴趣到以万亿记的图像的复杂数据集进行模式识别。这些发展必然提高了科学家和巨匠们对人工智能的兴趣,这也使得开发者们了解创建人工智能应用的真实本质。
谷歌的AI击败了一位围棋大师,是一种衡量人工智能突然的快速发展的方式,也揭示了这些技术如何发展而来和将来可以如何发展。
哪一种编程语言适合人工智能?
你所熟练掌握的每一种编程语言都可以是人工智能的开发语言。人工智能程序可以使用几乎所有的编程语言实现,最常见的有:Lisp,Prolog,C/C++,近来又有Java,最近还有Python.
LISP
像LISP这样的高级语言在人工智能中备受青睐,因为在各高校多年的研究后选择了快速原型而舍弃了快速执行。垃圾收集,动态类型,数据函数,统一的语法,交互式环境和可扩展性等一些特性使得LIST非常适合人工智能编程。
PROLOG
这种语言有着LISP高层和传统优势有效结合,这对AI是非常有用的。它的优势是解决“基于逻辑的问题”。Prolog提供了针对于逻辑相关问题的解决方案,或者说它的解决方案有着简洁的逻辑特征。它的主要缺点(恕我直言)是学起来很难。
机器学习库
PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库。它也提供了多种预定义好的环境来测试和比较你的算法。
PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法。它支持Linux和Mac OS X。
scikit-learn旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具。它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包(numpy,scipy.matplotlib)紧密联系在一起的。
MDP-Toolkit这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法(主成分分析、独立成分分析、慢特征分析),流型学习方法(局部线性嵌入),集中分类,概率方法(因子分析,RBM),数据预处理方法等等。 自然语言和文本处理库
NLTK 开源的Python模块,语言学数据和文档,用来研究和开发自然语言处理和文本分析。有windows,Mac OSX和Linux版本。
结论
python因为提供像 scikit-learn的好的框架,在人工智能方面扮演了一个重要的角色:Python中的机器学习,实现了这一领域中大多的需求。D3.js JS中数据驱动文档时可视化最强大和易于使用的工具之一。处理框架,它的快速原型制造使得它成为一门不可忽视的重要语言。AI需要大量的研究,因此没有必要要求一个500KB的Java样板代码去测试新的假说。python中几乎每一个想法都可以迅速通过20-30行代码来实现(JS和LISP也是一样)。因此,它对于人工智能是一门非常有用的语言。
案例
做了一个实验,一个使用人工智能和物联网做员工行为分析的软件。该软件通过员工情绪和行为的分心提供了一个有用的反馈给员工,从而提高了管理和工作习惯。
使用Python机器学习库,opencv和haarcascading概念来培训。建立了样品POC来检测通过安置在不同地点的无线摄像头传递回来基础情感像幸福,生气,悲伤,厌恶,怀疑,蔑视,讥讽和惊喜。收集到的数据会集中到云数据库中,甚至整个办公室都可以通过在Android设备或桌面点击一个按钮来取回。
开发者在深入分析脸部情感上复杂点和挖掘更多的细节中取得进步。在深入学习算法和机器学习的帮助下,可以帮助分析员工个人绩效和适当的员工/团队反馈。
3. python常用到哪些库
Python作为一个设计优秀的程序语言,现在已广泛应用于各种领域,依靠其强大的第三方类库,Python在各个领域都能发挥巨大的作用。
下面我们就来看一下python中常用到的库:
数值计算库:
1. NumPy
支持多维数组与矩阵运算,也针对数组运算提供大量的数学函数库。通常与SciPy和Matplotlib一起使用,支持比Python更多种类的数值类型,其中定义的最重要的对象是称为ndarray的n维数组类型,用于描述相同类型的元素集合,可以使用基于0的索引访问集合中元素。
2. SciPy
在NumPy库的基础上增加了众多的数学、科学及工程计算中常用的库函数,如线性代数、常微分方程数值求解、信号处理、图像处理、稀疏矩阵等,可进行插值处理、信号滤波,以及使用C语言加速计算。
3. Pandas
基于NumPy的一种工具,为解决数据分析任务而生。纳入大量库和一些标准的数据模型,提供高效地操作大型数据集所需的工具及大量的能快速便捷处理数据的函数和方法,为时间序列分析提供很好的支持,提供多种数据结构,如Series、Time-Series、DataFrame和Panel。
数据可视化库:
4. Matplotlib
第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。
5. Seaborn
利用了Matplotlib,用简洁的代码来制作好看的图表。与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。
6. ggplot
基于R的一个作图库ggplot2,同时利用了源于《图像语法》(The Grammar of Graphics)中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。
7. Bokeh
跟ggplot一样,Bokeh也基于《图形语法》的概念。与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。
8. Plotly
可以通过Python notebook使用,与Bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。
9. pygal
与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
10. geoplotlib
用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图。必须安装Pyglet(一个面向对象编程接口)方可使用。
11. missingno
用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。
web开发库:
12. Django
一个高级的Python Web框架,支持快速开发,提供从模板引擎到ORM所需的一切东西,使用该库构建App时,必须遵循Django的方式。
13. Socket
一个套接字通讯底层库,用于在服务器和客户端间建立TCP或UDP连接,通过连接发送请求与响应。
14. Flask
一个基于Werkzeug、Jinja 2的Python轻量级框架(microframework),默认配备Jinja模板引擎,也包含其他模板引擎或ORM供选择,适合用来编写API服务(RESTful rervices)。
15. Twisted
一个使用Python实现的基于事件驱动的网络引擎框架,建立在deferred object之上,一个通过异步架构实现的高性能的引擎,不适用于编写常规的Web Apps,更适用于底层网络。
数据库管理:
16. MySQL-python
又称MySQLdb,是Python连接MySQL最流行的一个驱动,很多框架也基于此库进行开发。只支持Python 2.x,且安装时有许多前置条件。由于该库基于C语言开发,在Windows平台上的安装非常不友好,经常出现失败的情况,现在基本不推荐使用,取代品为衍生版本。
17. mysqlclient
完全兼容MySQLdb,同时支持Python 3.x,是Django ORM的依赖工具,可使用原生SQL来操作数据库,安装方式与MySQLdb一致。
18. PyMySQL
纯Python实现的驱动,速度比MySQLdb慢,最大的特点为安装方式简洁,同时也兼容MySQL-python。
19. SQLAlchemy
一种既支持原生SQL,又支持ORM的工具。ORM是Python对象与数据库关系表的一种映射关系,可有效提高写代码的速度,同时兼容多种数据库系统,如SQLite、MySQL、PostgreSQL,代价为性能上的一些损失。
自动化运维:
20. jumpsever跳板机
一种由Python编写的开源跳板机(堡垒机)系统,实现了跳板机的基本功能,包含认证、授权和审计,集成了Ansible、批量命令等。
支持WebTerminal Bootstrap编写,界面美观,自动收集硬件信息,支持录像回放、命令搜索、实时监控、批量上传下载等功能,基于SSH协议进行管理,客户端无须安装agent。主要用于解决可视化安全管理,因完全开源,容易再次开发。
21. Mage分布式监控系统
一种用Python开发的自动化监控系统,可监控常用系统服务、应用、网络设备,可在一台主机上监控多个不同服务,不同服务的监控间隔可以不同,同一个服务在不同主机上的监控间隔、报警阈值可以不同,并提供数据可视化界面。
22. Mage的CMDB
一种用Python开发的硬件管理系统,包含采集硬件数据、API、页面管理3部分功能,主要用于自动化管理笔记本、路由器等常见设备的日常使用。由服务器的客户端采集硬件数据,将硬件信息发送至API,API负责将获取的数据保存至数据库中,后台管理程序负责对服务器信息进行配置和展示。
23. 任务调度系统
一种由Python开发的任务调度系统,主要用于自动化地将一个服务进程分布到其他多个机器的多个进程中,一个服务进程可作为调度者依靠网络通信完成这一工作。
24. Python运维流程系统
一种使用Python语言编写的调度和监控工作流的平台,内部用于创建、监控和调整数据管道。允许工作流开发人员轻松创建、维护和周期性地调度运行工作流,包括了如数据存储、增长分析、Email发送、A/B测试等诸多跨多部门的用例。
GUI编程:
25. Tkinter
一个Python的标准GUI库,可以快速地创建GUI应用程序,可以在大多数的UNIX平台下使用,同样可以应用在Windows和Macintosh系统中,Tkinter 8.0的后续版本可以实现本地窗口风格,并良好地运行在绝大多数平台中。
26. wxPython
一款开源软件跨平台GUI库wxWidgets的Python封装和Python模块,是Python语言的一套优秀的GUI图形库,允许程序员很方便地创建完整的、功能健全的GUI用户界面。
27. PyQt
一个创建GUI应用程序的工具库,是Python编程语言和Qt的成功融合,可以运行在所有主要操作系统上,包括UNIX、Windows和Mac。PyQt采用双许可证,开发人员可以选择GPL和商业许可,从PyQt的版本4开始,GPL许可证可用于所有支持的平台。
28. PySide
一个跨平台的应用程式框架Qt的Python绑定版本,提供与PyQt类似的功能,并相容API,但与PyQt不同处为其使用LGPL授权。
更多Python知识请关注Python自学网。
4. 如何自学编程python
首先先了解Python语言的四大发展方向。目前Python的主要方向有web后端开发、大数据分析网络爬虫和人工智能,当然如果再细分的话还有自动化测试、运维等方向。
在学习Python的基础语法时,并不需要太多的基础,基本只要熟练使用电脑日常功能并对Python感兴趣就可以了,但如果想要在人工智能领域方向发展的话,线性代数、概率、统计等高等数学知识基本是必需的,原因在于这些知识能够让你的逻辑更加清晰,在编程过程中有更强的思路。
分享一个千锋Python的学习大纲给你
第一阶段 - Python 数据科学
Python 基础语法
入门及环境安装 、基本语法与数据类型、控制语句、错误及异常、错误处理方法、异常处理方法 、常用内置函数 、函数创建与使用、Python 高级特性、高级函数、Python 模块、PythonIO 操作 、日期与时间 、类与面向对象 、Python 连接数据库
Python 数据清洗
数字化 Python 模块Numpy、数据分析利器Pandas、Pandas 基本操作、Pandas 高级操作
Python 数据可视化
数据可视化基础、MLlib(RDD-Base API)机器学习、MatPlotlib 绘图进阶、高级绘图工具
第二阶段 - 商业数据可视化
Excel 业务分析
Excel 基础技能、Excel 公式函数、图表可视化、人力 & 财务分析案例、商业数据分析方法、商业数据分析报告
Mysql 数据库
Mysql 基础操作(一)、Mysql 基础操作(二)、Mysql 中级操作、Mysql 高级操作、电商数据处理案例
PowerBI
初级商业智能应用 (PowerQuery)、初级商业智能应用 (PowerPivot)、初级商业智能应用案例、存储过程、PowerBI Desktop 案例、PowerBI Query 案例
统计学基础
微积分、线性代数基础、统计基础
Tableau
Tableau 基本操作、Tableau 绘图、Tableau 数据分析、Tableau 流量分析
SPSS
客户画像、客户价值模型、神经网络、决策树、时间序列
第三阶段 - Python 机器学习
Python 统计分析
数据准备、一元线性回归、多元线性回归、一般 logistic 回归、ogistic 回归与修正
Python 机器学习基础
机器学习入门、KNN 讲义、模型评估方法、模型优化方法、Kmeans、DBSCAN、决策树算法实战
Python 机器学习中级
线性回归、模型优化方法、逻辑回归、朴素贝叶斯、关联规则、协同过滤、推荐系统案例
Python 机器学习高级
集成算法 - 随机森林、集成算法 -AdaBoost、数据处理和特征工程、SVM、神经网络、XGBoost
第四阶段 - 项目实战
电商市场数据挖掘项目实战
项目背景 & 业务逻辑 、指定分析策略 、方法实现与结果 、营销活动设计及结果评价 、撰写数据分析报告
金融风险信用评估项目实战
项目背景 & 业务逻辑 、建模准备 、数据清洗 、模型训练 、模型评估 、模型部署与更新
第五阶段 - 数据采集
爬虫类库解析 、数据解析 、动态网页提取 、验证码、IP 池 、多线程爬虫 、反爬应对措施 、scrapy 框架
第六阶段 - 企业课
团队户外拓展训练 、企业合作项目课程 、管理课程 、沟通表达训练 、职业素养课程
以上就是零基础Python学习路线的所有内容,希望对大家的学习有所帮助。
5. 求python支持向量机数据设置标签代码
以下是使用Python中的Scikit-learn库实现支持向量机(SVM)模型的盯宽数据设置标签代码示例:
from sklearn import svm
# 假设有以下三个样本的数据:
X = [[0, 0], [1, 1], [2, 2]]
y = [0, 1, 1] # 对应每个数据点的标签,凯悔0表示负样本,1表示正样本
# 创建SVM模型
clf = svm.SVC()
# 将数据集(X)和标签(y)作为训练数据来训练模型
clf.fit(X, y)
上述代码中,X是一个二维数组,每个元素都代表一个数据点的特征值,y是一凯孙亮个一维数组,每个元素都代表对应数据点的标签。通过将X和y作为训练数据,可以训练SVM模型并得到分类结果。
6. python数据挖掘是什么
数据挖掘(data mining,简称DM),是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信
息和知识的过程。
python数据挖掘常用模块
numpy模块:用于矩阵运算、随机数的生成等
pandas模块:用于数据的读取、清洗、整理、运算、可视化等
matplotlib模块:专用于数据可视化,当然含有统计类的seaborn模块
statsmodels模块:用于构建统计模型,如线性回归、岭回归、逻辑回归、主成分分析等
scipy模块:专用于统计中的各种假设检验,如卡方检验、相关系数检验、正态性检验、t检验、F检验等
sklearn模块:专用于机器学习,包含了常规的数据挖掘算法,如决策树、森林树、提升树、贝叶斯、K近邻、SVM、GBDT、Kmeans等
数据分析和挖掘推荐的入门方式是?小公司如何利用数据分析和挖掘?
关于数据分析与挖掘的入门方式是先实现代码和Python语法的落地(前期也需要你了解一些统计学知识、数学知识等),这个过程需要
你多阅读相关的数据和查阅社区、论坛。然后你在代码落地的过程中一定会对算法中的参数或结果产生疑问,此时再去查看统计学和数据
挖掘方面的理论知识。这样就形成了问题为导向的学习方法,如果将入门顺序搞反了,可能在硬着头皮研究理论算法的过程中就打退堂鼓
了。
对于小公司来说,你得清楚的知道自己的痛点是什么,这些痛点是否能够体现在数据上,公司内部的交易数据、营销数据、仓储数据等是
否比较齐全。在这些数据的基础上搭建核心KPI作为每日或每周的经营健康度衡量,数据分析侧重于历史的描述,数据挖掘则侧重于未来
的预测。
差异在于对数据的敏感度和对数据的个性化理解。换句话说,就是懂分析的人能够从数据中看出破绽,解决问题,甚至用数据创造价值;
不懂分析的人,做不到这些,更多的是描述数据。
更多技术请关注python视频教程。
7. 求python多元支持向量机多元回归模型最后预测结果导出代码、测试集与真实值R2以及对比图代码
这是一个多元支持向量机回归的模型,以下是一个参考的实现代码:
import numpy as npimport matplotlib.pyplot as pltfrom sklearn import svmfrom sklearn.metrics import r2_score
# 模拟数据
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(16))
# 分割数据
train_X = X[:60]
train_y = y[:60]
test_X = X[60:]
test_y = y[60:]
# 模型训练
model = svm.SVR(kernel='rbf', C=1e3, gamma=0.1)
model.fit(train_X, train_y)
# 预测结果
pred_y = model.predict(test_X)# 计算R2r2 = r2_score(test_y, pred_y)
# 对比图
plt.scatter(test_X, test_y, color='darkorange', label='data')
plt.plot(test_X, pred_y, color='navy', lw=2, label='SVR model')
plt.title('R2={:.2f}'.format(r2))
plt.legend()
plt.show()
上面的代码将数据分为训练数据和测试数据,使用SVR模型对训练数据进行训练,然后对测试数据进行预测。计算预测结果与真实值的R2,最后将结果画出对比图,以评估模型的效果。
8. python常用到哪些库
第一、NumPy
NumPy是NumericalPython的简写,是Python数值计算的基石。它提供多种数据结构、算法以及大部分涉及Python数值计算所需的接口。NumPy还包括其他内容:
①快速、高效的多维数组对象ndarray
②基于元素的数组计算或数组间数学操作函数
③用于读写硬盘中基于数组的数据集的工具
④线性代数操作、傅里叶变换以及随机数生成
除了NumPy赋予Python的快速数组处理能力之外,NumPy的另一个主要用途是在算法和库之间作为数据传递的数据容器。对于数值数据,NumPy数组能够比Python内建数据结构更为高效地存储和操作数据。
第二、pandas
pandas提供了高级数据结构和函数,这些数据结构和函数的设计使得利用结构化、表格化数据的工作快速、简单、有表现力。它出现于2010年,帮助Python成为强大、高效的数据分析环境。常用的pandas对象是DataFrame,它是用于实现表格化、面向列、使用行列标签的数据结构;以及Series,一种一维标签数组对象。
pandas将表格和关系型数据库的灵活数据操作能力与Numpy的高性能数组计算的理念相结合。它提供复杂的索引函数,使得数据的重组、切块、切片、聚合、子集选择更为简单。由于数据操作、预处理、清洗在数据分析中是重要的技能,pandas将是重要主题。
第三、matplotlib
matplotlib是最流行的用于制图及其他二维数据可视化的Python库,它由John D.
Hunter创建,目前由一个大型开发者团队维护。matplotlib被设计为适合出版的制图工具。
对于Python编程者来说也有其他可视化库,但matplotlib依然使用最为广泛,并且与生态系统的其他库良好整合。
第四、IPython
IPython项目开始于2001年,由FernandoPérez发起,旨在开发一个更具交互性的Python解释器。在过去的16年中,它成为Python数据技术栈中最重要的工具之一。
尽管它本身并不提供任何计算或数据分析工具,它的设计侧重于在交互计算和软件开发两方面将生产力最大化。它使用了一种执行-探索工作流来替代其他语言中典型的编辑-编译-运行工作流。它还提供了针对操作系统命令行和文件系统的易用接口。由于数据分析编码工作包含大量的探索、试验、试错和遍历,IPython可以使你更快速地完成工作。
第五、SciPy
SciPy是科学计算领域针对不同标准问题域的包集合。以下是SciPy中包含的一些包:
①scipy.integrate数值积分例程和微分方程求解器
②scipy.linalg线性代数例程和基于numpy.linalg的矩阵分解
③scipy.optimize函数优化器和求根算法
④scipy.signal信号处理工具
⑤scipy.sparse稀疏矩阵与稀疏线性系统求解器
SciPy与Numpy一起为很多传统科学计算应用提供了一个合理、完整、成熟的计算基础。
第六、scikit-learn
scikit-learn项目诞生于2010年,目前已成为Python编程者首选的机器学习工具包。仅仅七年,scikit-learn就拥有了全世界1500位代码贡献者。其中包含以下子模块:
①分类:SVM、最近邻、随机森林、逻辑回归等
②回归:Lasso、岭回归等
③聚类:K-means、谱聚类等
④降维:PCA、特征选择、矩阵分解等
⑤模型选择:网格搜索、交叉验证、指标矩阵
⑥预处理:特征提取、正态化
scikit-learn与pandas、statsmodels、IPython一起使Python成为高效的数据科学编程语言。