导航:首页 > 编程语言 > sparkpythonnumpy

sparkpythonnumpy

发布时间:2023-09-29 08:42:21

㈠ 数据分析工具有哪些 python

IPython


IPython 是一个在多种编程语言之间进行交互计算的命令行 shell,最开始是用 python 开发的,提供增强的内省,富媒体,扩展的 shell
语法,tab 补全,丰富的历史等功能。IPython 提供了如下特性:

更强的交互 shell(基于 Qt 的终端)

一个基于浏览器的记事本,支持代码,纯文本,数学公式,内置图表和其他富媒体

支持交互数据可视化和图形界面工具

灵活,可嵌入解释器加载到任意一个自有工程里

简单易用,用于并行计算的高性能工具

由数据分析总监,Galvanize 专家 Nir Kaldero 提供。



GraphLab Greate 是一个 Python 库,由 C++ 引擎支持,可以快速构建大型高性能数据产品。

这有一些关于 GraphLab Greate 的特点:

可以在您的计算机上以交互的速度分析以 T 为计量单位的数据量。

在单一平台上可以分析表格数据、曲线、文字、图像。

最新的机器学习算法包括深度学习,进化树和 factorization machines 理论。

可以用 Hadoop Yarn 或者 EC2 聚类在你的笔记本或者分布系统上运行同样的代码。

借助于灵活的 API 函数专注于任务或者机器学习。

在云上用预测服务便捷地配置数据产品。

为探索和产品监测创建可视化的数据。

由 Galvanize 数据科学家 Benjamin Skrainka 提供。

Pandas

pandas 是一个开源的软件,它具有 BSD 的开源许可,为 Python
编程语言提供高性能,易用数据结构和数据分析工具。在数据改动和数据预处理方面,Python 早已名声显赫,但是在数据分析与建模方面,Python
是个短板。Pands 软件就填补了这个空白,能让你用 Python 方便地进行你所有数据的处理,而不用转而选择更主流的专业语言,例如 R 语言。

整合了劲爆的 IPyton 工具包和其他的库,它在 Python 中进行数据分析的开发环境在处理性能,速度,和兼容方面都性能卓越。Pands
不会执行重要的建模函数超出线性回归和面板回归;对于这些,参考 statsmodel 统计建模工具和 scikit-learn 库。为了把 Python
打造成顶级的统计建模分析环境,我们需要进一步努力,但是我们已经奋斗在这条路上了。

由 Galvanize 专家,数据科学家 Nir Kaldero 提供。

PuLP

线性编程是一种优化,其中一个对象函数被最大程度地限制了。PuLP 是一个用 Python
编写的线性编程模型。它能产生线性文件,能调用高度优化的求解器,GLPK,COIN CLP/CBC,CPLEX,和GUROBI,来求解这些线性问题。

由 Galvanize 数据科学家 Isaac Laughlin 提供

Matplotlib



matplotlib 是基于 Python 的
2D(数据)绘图库,它产生(输出)出版级质量的图表,用于各种打印纸质的原件格式和跨平台的交互式环境。matplotlib 既可以用在 python 脚本,
python 和 ipython 的 shell 界面 (ala MATLAB? 或 Mathematica?),web 应用服务器,和6类 GUI
工具箱。

matplotlib 尝试使容易事情变得更容易,使困难事情变为可能。你只需要少量几行代码,就可以生成图表,直方图,能量光谱(power
spectra),柱状图,errorcharts,散点图(scatterplots)等,。

为简化数据绘图,pyplot 提供一个类 MATLAB 的接口界面,尤其是它与 IPython
共同使用时。对于高级用户,你可以完全定制包括线型,字体属性,坐标属性等,借助面向对象接口界面,或项 MATLAB 用户提供类似(MATLAB)的界面。

Galvanize 公司的首席科学官 Mike Tamir 供稿。

Scikit-Learn



Scikit-Learn 是一个简单有效地数据挖掘和数据分析工具(库)。关于最值得一提的是,它人人可用,重复用于多种语境。它基于
NumPy,SciPy 和 mathplotlib 等构建。Scikit 采用开源的 BSD 授权协议,同时也可用于商业。Scikit-Learn
具备如下特性:

分类(Classification) – 识别鉴定一个对象属于哪一类别

回归(Regression) – 预测对象关联的连续值属性

聚类(Clustering) – 类似对象自动分组集合

降维(Dimensionality Rection) – 减少需要考虑的随机变量数量

模型选择(Model Selection) –比较、验证和选择参数和模型

预处理(Preprocessing) – 特征提取和规范化

Galvanize 公司数据科学讲师,Isaac Laughlin提供

Spark



Spark 由一个驱动程序构成,它运行用户的 main 函数并在聚类上执行多个并行操作。Spark
最吸引人的地方在于它提供的弹性分布数据集(RDD),那是一个按照聚类的节点进行分区的元素的集合,它可以在并行计算中使用。RDDs 可以从一个 Hadoop
文件系统中的文件(或者其他的 Hadoop 支持的文件系统的文件)来创建,或者是驱动程序中其他的已经存在的标量数据集合,把它进行变换。用户也许想要 Spark
在内存中永久保存 RDD,来通过并行操作有效地对 RDD 进行复用。最终,RDDs 无法从节点中自动复原。

Spark 中第二个吸引人的地方在并行操作中变量的共享。默认情况下,当 Spark
在并行情况下运行一个函数作为一组不同节点上的任务时,它把每一个函数中用到的变量拷贝一份送到每一任务。有时,一个变量需要被许多任务和驱动程序共享。Spark
支持两种方式的共享变量:广播变量,它可以用来在所有的节点上缓存数据。另一种方式是累加器,这是一种只能用作执行加法的变量,例如在计数器中和加法运算中。

㈡ 学习python的数据分析需要会算法吗

数据结构和算法是程序员的基本功,学了只有好处没有坏处。
Python语言内置了很多数据类型、标准库,一定要懂常见算法的原理和基本实现方式。
如果计划往人工智能领域发展,机器学习是数学,必须掌握一些必要的数学基础,学工作上实际有用到的,比如是微积分、概率论、线性代数、凸优化等这些。数据分析里需要应用到的内容也需要掌握,算法方面需要掌握一些基本的框架:python、spark、mllib、scikit-learning、pytorch、TensorFlow,数据方面需要懂得HQL、numpy、pandas,如果你本身是后台开发、app开发、数据分析、项目管理,则是一个学习算法的一个加分项。

㈢ Python五大应用领域是什么

一、网络爬虫


网络爬虫是Python比较常用的一个场景,国际上,google在前期大量地运用Python言语作为网络爬虫的根底,带动了整个Python言语的运用发展。


二、数据处理


Python有很齐备的生态环境。"大数据"分析中涉及到的分布式核算、数据可视化、数据库操作等,Python中都有成熟的模块能够挑选完结其功能。关于Hadoop-MapRece和Spark,都能够直接运用Python完结核算逻辑,这不管关于数据科学家仍是关于数据工程师而言都是十分便当的。


三、web开发


Python的诞生前史比Web还要早,由于Python是一种解说型的脚本言语,开发效率高,所以十分适合用来做Web开发。


Django 是 Python 编程言语驱动的一个开源模型-视图-控制器(MVC)风格的 Web 运用程序结构。运用 Django,咱们在几分钟之内就能够创建高品质、易维护、数据库驱动的运用程序。


四、数据分析


关于数据分析师来说,不只要自己理解数据背面的含义,而且还要给更直地展现数据的含义。


Scipy是一组专门解决科学核算中各种规范问题域的包的集合。Numpy是python科学核算的根底包。Pandas处理上千万的数据是一挥而就的工作,同时随后咱们也将看到它比SQL有更强的表达能力,能够做很多复杂的操作,要写的code也更少。


五、人工智能


人工智能是现在十分火的一个方向,AI热潮让Python言语的未来充满了无限的潜力。现在释放出来的几个十分有影响力的AI结构,大多是Python的实现,为什么呢?


在人工智能大领域领域内的数据发掘、机器学习、神经网络、深度学习等方面都是主流的编程言语,得到广泛的支持和运用。人工智能的核心算法大部分仍是依赖于C/C++的,由于是核算密集型,需求十分精细的优化,还需求GPU、专用硬件之类的接口,这些都只要C/C++能做到。


关于Python五大应用领域是什么,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。

㈣ 学会Python之后更适合做哪方面的工作

发展前景一:Linux运维用python实现的测试工具及过程,包含服务器端、客户端、web、andriod、client端的自动化测试,自动化性能测试的执行、监控和分析,常用selenium appium等框架。Linux运维是必须而且一定要掌握Python语言,Python是一门非常NB的编程语言,它可以满足Linux运维工程师的工作需求提升效率,总而提升自己的能力,运维工程师需要自己独立开发一个完整的自动化系统时,这个时候才是真正价值的体现,才能证明自身的能力,让老板重视。

发展前景二:Python Web网站工程师我们都知道Web一直都是不可忽视的存在,我们离不开网络,离不开Web,利用Python的框架可以做网站,而且都是一些精美的前端界面,还有我们需要掌握一些数据的应用。

发展前景三:Python自动化测试大家都知道,就是Python语言对测试的帮助是非常大的,自动化测试中Python语言的用途很广,可以说Python太强大,掌握和熟悉自动化的流程,方法和我们总使用的各个模板,到现在为止,我了解的Python使用最多的应该是自动化测试。

发展前景四:数据分析我们都知道现在来临了大数据的时代,数据可以说明一切问题的原因,现在很多做数据分析的不是原来那么简单,Python语言成为了做数据分析师的第一首选,它同时可以给工作带来很大的效率。Python有三大神器:numpy,scipy,matplotlib,其中numpy很多底层使用C语言实现的,所以速度很快,用它参加各种数学建模大赛,完全可以替代r语言和MATLAB。spark,Hadoop都开了Python的接口,所以使用Python做大数据的maprece也非常简单,加上py对数据库支持都很好,或者类似sqlalchemy的orm也非常强大好用。

发展前景五:人工智能我们都知道谷歌制作出了的机器人战胜了一个围棋大师,这个就是目前刚出头的人工智能,当然我们的人工智能时代还没有到来,如果这天来了,生活和世界将会发生翻天覆地的变化,而且现在发展这么快,人工智能的时代不会太远。Python是一种用LISP和JAVA编译的语言。按照Norvig文章中对Lips和Python的比较,这两种语言彼此非常相似,仅有一些细小的差别。还有JPthon,提供了访问Java图像用户界面的途径。这是PeterNorvig选择用JPyhton翻译他人工智能书籍中程序的的原因。JPython可以让他使用可移植的GUI演示,和可移植的http/ftp/回头ml库。

因此,它非常适合作为人工智能语言的。以上就是目前比较好的几个Python的发展规划和前景,让你学习Python有个流程,不会晕头转向的。Python没有非常强势的问题,但是它简单的语言结构应用非常广泛,我们不用学习无比艰难的JAVA,Python是最好的选择,无论上述你选择哪个方向,都是不会错的。

㈤ python网络编程可以用来做什么

1. Web开发
最火的Python web框架Django,支持异步高并发的Tornado框架,短小精悍的flask,bottle,Django官方的标语把Django定义为the framework for perfectionist with deadlines(大意是一个为完全主义者开发的高效率web框架)
2. 网络编程
支持高并发的Twisted网络框架,py3引入的asyncio使异步编程变的非常简单
3. 爬虫开发
爬虫领域,Python几乎是霸主地位,Scrapy/Request/BeautifuSoap/urllib等,想爬啥就爬啥
4. 云计算开发
目前最火最知名的云计算框架就是OpenStack,Python现在的火,很大一部分就是因为云计算市场近几年的爆发
5. 人工智能
MASA和Google早期大量使用Python,为什么Python积累了丰富的科学运算库,当AI时代来临后,Python从众多编程语言中脱颖而出,各种人工智能算法都基于Python编写,由其PyTorch之后,Python作为AI时代头牌语言的位置基本确立!
6. 自动化运维
问问中国的每个运维人员,运维人员必须会的语言是什么?10个人详细会给你一个相同的答案,它的名字叫Python
7. 金融分析
金融公司使用的很多分析程序、高频交易软件就是用的Python,目前,Python是金融分析、量化交易领域里用的最多的语言
8. 科学运算
97年开始,NASA就在大量使用Python在进行各种复杂的科学运算,随着NumPy,SciPy,Matplotlib,Enthought librarys等众多程序库的开发,使得Python越来越适合做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软件Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛
9. 游戏开发
在网络游戏开发中Python也有很多应用。相比Lua or C++,Python比Lua有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑,与Lua相比,Python更适合作为一种Host语言,即程序的入口点是在Python那一端会比较好,然后用C/C++在非常必要的时候写一些扩展。Python非常适合编写1万行以上的项目,而且能够很好的把网游项目的规模控制在10万行代码以内。
10. 桌面软件
虽然大家很少使用桌面软件了,但是Python在图形界面开发上也很强大,你可以用tkinter/PyQT框架开发各种桌面软件!

阅读全文

与sparkpythonnumpy相关的资料

热点内容
源码数据库怎么配备 浏览:136
知乎程序员小灰 浏览:574
新概念英语第一册书pdf 浏览:5
安卓ans文件怎么打开 浏览:893
选择题改进分治算法的方法有 浏览:108
下载云服务器有什么好处 浏览:23
江苏机架式服务器云主机 浏览:411
linux补全命令 浏览:514
我要打命令 浏览:970
御人pdf 浏览:390
小米手机怎么发送文件夹用qq 浏览:917
找人一起玩用什么app好 浏览:398
程序员最烦的4件事 浏览:485
怎么查ice服务器 浏览:760
excel加密不可以复制 浏览:308
py编译器的键盘输入在哪 浏览:226
云服务器和深度学习 浏览:102
交叉编译标准输出 浏览:24
如何启用DNS服务器 浏览:736
香港云服务器一年多少钱 浏览:417