❶ 《spark大数据处理技术应用与性能优化》pdf下载在线阅读全文,求百度网盘云资源
《spark大数据处理技术应用与性能优化》网络网盘pdf最新全集下载:
链接:https://pan..com/s/16AtVk9yxUBX7Kw1aRw-uRg
❷ 《深入理解spark核心思想及源码分析》pdf下载在线阅读全文,求百度网盘云资源
《深入理解spark核心思想及源码分析》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1iOq9-MrepVdWcIrbALPMPg
❸ 《Spark大数据分析实战》epub下载在线阅读全文,求百度网盘云资源
《Spark大数据分析实战》(高彦杰/倪亚宇)电子书网盘下载免费在线阅读
链接: https://pan..com/s/1MyKNRhDaWb9FMUYESLDIcw
书名:Spark大数据分析实战
豆瓣评分:5.2
作者:高彦杰/倪亚宇
出版社:机械工业出版社
出版年:2016-1-1
页数:213
内容简介
本书一共11章:其中第1~3章,主要介绍了Spark的基本概念、编程模型、开发与部署的方法;第4~11章,详细详解了热点新闻分析系统、基于云平台的日志数据分析、情感分析系统、搜索引擎链接分析系统等的应用与算法等核心知识点。
作者简介
高彦杰,毕业于*国人民大学,就职于微软亚洲研究院。开源技术爱好者,对spark及其他开源大数据系统与技术有较为深入的认识和研究,实践经验丰富。较早接触并使用spark,对spark应用开发、spark系统的运维和测试比较熟悉.深度阅读了spark的源代码,了解spark的运行机制,擅长spark的查询优化。
曾着有畅销书《spark大数据处理:技术、应用与性能优化》。
倪亚宇,清华大学自动化系在读博士研究生,曾于微软亚洲研究院、IBM研究院实习。对大规模的推荐系统和机器学习算法有较为深入的研究和丰富的实践经验。
❹ 《大数据Spark企业级实战》pdf下载在线阅读全文,求百度网盘云资源
《大数据Spark企业级实战》网络网腊派盘pdf最新全集下载:
链接:https://pan..com/s/1ZKawITVbG7MADTW0Q-b4jw
❺ 跪求《驾驭大数据》pdf电子版书籍免费网盘资源下载地址
徐老师大数据培训Hadoop+HBase+ZooKeeper+Spark+Kafka+Scala+Ambari网络网盘免费资源在线学习
链接: https://pan..com/s/16oWm-K0KW0XJOBpoyrg51g
徐老师大数据培训Hadoop+HBase+ZooKeeper+Spark+Kafka+Scala+Ambari 相关书籍与课件 5.9-徐老师大数据-Spark2 5.8-徐老师大数据-Spark1 5.7-徐老师大数据-ZooKeeper2 5.6-徐老师大数据-ZooKeeper1 5.5-徐老师大数据-HBase3 5.4-徐老师大数据-HBase2 5.3-徐培成大数据-hadoop14-HBase1 5.2-徐培成大数据-hadoop13 5.18-徐老师大数据-Ambaril2 5.17-徐老师大数据-Ambari1 5.16-徐老师大数据-Scala1 5.15-徐老师大数据-Kafka1 5.14-徐老师大数据-Spark7
❻ 《Spark快速数据处理》pdf下载在线阅读全文,求百度网盘云资源
《Spark快速数据处理》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1596IqDNW9IIWx_GwZlOZAg
❼ 《SparkinAction》pdf下载在线阅读全文,求百度网盘云资源
《Spark in Action》(Marko Bonaći)电子书网盘下载免费在线阅读
资源链接:
链接:
书名:Spark in Action
作者:Marko Bonaći
豆瓣评分:7.7
出版社:Manning
出版年份:2016-1
页数:400
内容简介:
Working with big data can be complex and challenging, in part because of the multiple analysis frameworks and tools required. Apache Spark is a big data processing framework perfect for analyzing near-real-time streams and discovering historical patterns in batched data sets. But Spark goes much further than other frameworks. By including machine learning and graph processing capabilities, it makes many specialized data processing platforms obsolete. Spark's unified framework and programming model significantly lowers the initial infrastructure investment, and Spark's core abstractions are intuitive for most Scala, Java, and Python developers.
Spark in Action teaches you to use Spark for stream and batch data processing. It starts with an introction to the Spark architecture and ecosystem followed by a taste of Spark's command line interface. You then discover the most fundamental concepts and abstractions of Spark, particularly Resilient Distributed Datasets (RDDs) and the basic data transformations that RDDs provide. The first part of the book also introces you to writing Spark applications using the the core APIs. Next, you learn about different Spark components: how to work with structured data using Spark SQL, how to process near-real time data with Spark Streaming, how to apply machine learning algorithms with Spark MLlib, how to apply graph algorithms on graph-shaped data using Spark GraphX, and a clear introction to Spark clustering.
作者简介:
Marko Bonaći has worked with Java for 13 years. He currently works as IBM Enterprise Content Management team lead at SV Group. Petar Zečević is a CTO at SV Group. During the last 14 years he has worked on various projects as a Java developer, team leader, consultant and software specialist. He is the founder and, with Marko, organizer of popular Spark@Zg meetup group.