❶ python函数的参数类型
Python函数的参数类型主要包括必选参数、可选参数、可变参数、位置参数和关键字参数,本文介绍一下他们的定义以及可变数据类型参数传递需要注意的地方。
必选参数(Required arguments)是必须输入的参数,比如下面的代码,必须输入2个参数,否则就会报错:
其实上面例子中的参数 num1和num2也属于关键字参数,比如可以通过如下方式调用:
执行结果:
可选参数(Optional arguments)可以不用传入函数,有一个默认值,如果没有传入会使用默认值,不会报错。
位置参数(positional arguments)根据其在函数定义中的位置调用,下面是pow()函数的帮助信息:
x,y,z三个参数的的顺序是固定的,并且不能使用关键字:
输出:
在上面的pow()函数帮助信息中可以看到位置参数后面加了一个反斜杠 / ,这是python内置函数的语法定义,Python开发人员不能在python3.8版本之前的代码中使用此语法。但python3.0到3.7版本可以使用如下方式定义位置参数:
星号前面的参数为位置参数或者关键字参数,星号后面是强制关键字参数,具体介绍见强制关键字参数。
python3.8版本引入了强制位置参数(Positional-Only Parameters),也就是我们可以使用反斜杠 / 语法来定义位置参数了,可以写成如下形式:
来看下面的例子:
python3.8运行:
不能使用关键字参数形式赋值了。
可变参数 (varargs argument) 就是传入的参数个数是可变的,可以是0-n个,使用星号( * )将输入参数自动组装为一个元组(tuple):
执行结果:
关键字参数(keyword argument)允许将任意个含参数名的参数导入到python函数中,使用双星号( ** ),在函数内部自动组装为一个字典。
执行结果:
上面介绍的参数可以混合使用:
结果:
注意:由于传入的参数个数不定,所以当与普通参数一同使用时,必须把带星号的参数放在最后。
强制关键字参数(Keyword-Only Arguments)是python3引入的特性,可参考:https://www.python.org/dev/peps/pep-3102/。 使用一个星号隔开:
在位置参数一节介绍过星号前面的参数可以是位置参数和关键字参数。星号后面的参数都是强制关键字参数,必须以指定参数名的方式传参,如果强制关键字参数没有设置默认参数,调用函数时必须传参。
执行结果:
也可以在可变参数后面命名关键字参数,这样就不需要星号分隔符了:
执行结果:
在Python对象及内存管理机制中介绍了python中的参数传递属于对象的 引用传递 (pass by object reference),在编写函数的时候需要特别注意。
先来看个例子:
执行结果:
l1 和 l2指向相同的地址,由于列表可变,l1改变时,l2也跟着变了。
接着看下面的例子:
结果:
l1没有变化!为什么不是[1, 2, 3, 4]呢?
l = l + [4]表示创建一个“末尾加入元素 4“的新列表,并让 l 指向这个新的对象,l1没有进行任何操作,因此 l1 的值不变。如果要改变l1的值,需要加一个返回值:
结果:
下面的代码执行结果又是什么呢?
执行结果:
和第一个例子一样,l1 和 l2指向相同的地址,所以会一起改变。这个问题怎么解决呢?
可以使用下面的方式:
也可以使用浅拷贝或者深度拷贝,具体使用方法可参考Python对象及内存管理机制。这个问题在Python编程时需要特别注意。
本文主要介绍了python函数的几种参数类型:必选参数、可选参数、可变参数、位置参数、强制位置参数、关键字参数、强制关键字参数,注意他们不是完全独立的,比如必选参数、可选参数也可以是关键字参数,位置参数可以是必选参数或者可选参数。
另外,python中的参数传递属于对象的 引用传递 ,在对可变数据类型进行参数传递时需要特别注意,如有必要,使用python的拷贝方法。
参考文档:
--THE END--
❷ Python 的函数是怎么传递参数的
对象vs变量
在python中,类型属于对象,变量是没有类型的,这正是python的语言特性,也是吸引着很多pythoner的一点。所有的变量都可以理解是内存中一个对象的“引用”,或者,也可以看似c中void*的感觉。所以,希望大家在看到一个python变量的时候,把变量和真正的内存对象分开。
类型是属于对象的,而不是变量。
这样,很多问题就容易思考了。
例如:
对象vs变量
12
nfoo = 1 #一个指向int数据类型的nfoo(再次提醒,nfoo没有类型)lstFoo = [1] #一个指向list类型的lstFoo,这个list中包含一个整数1
可更改(mutable)与不可更改(immutable)对象
对应于上一个概念,就必须引出另了另一概念,这就是可更改(mutable)对象与不可更改(immutable)对象。
对于python比较熟悉的人们都应该了解这个事实,在python中,strings, tuples, 和numbers是不可更改的对象,而list,dict等则是可以修改的对象。那么,这些所谓的可改变和不可改变影响着什么呢?
可更改vs不可更改
12345
nfoo = 1nfoo = 2lstFoo = [1]lstFoo[0] = 2
代码第2行中,内存中原始的1对象因为不能改变,于是被“抛弃”,另nfoo指向一个新的int对象,其值为2
代码第5行中,更改list中第一个元素的值,因为list是可改变的,所以,第一个元素变更为2。其实应该说,lstFoo指向一个包含一个对象的数组。赋值所发生的事情,是有一个新int对象被指定给lstFoo所指向的数组对象的第一个元素,但是对于lstFoo本身来说,所指向的数组对象并没有变化,只是数组对象的内容发生变化了。这个看似void*的变量所指向的对象仍旧是刚刚的那个有一个int对象的list。
如下图所示:
Python的函数参数传递:传值?引用?
对于变量(与对象相对的概念),其实,python函数参数传递可以理解为就是变量传值操作,用C++的方式理解,就是对void*赋值。如果这个变量的值不变,我们看似就是引用,如果这个变量的值改变,我们看着像是在赋值。有点晕是吧,我们仍旧据个例子。
不可变对象参数调用
12345
def ChangeInt( a ): a = 10nfoo = 2 ChangeInt(nfoo)print nfoo #结果是2
这时发生了什么,有一个int对象2,和指向它的变量nfoo,当传递给ChangeInt的时候,按照传值的方式,复制了变量nfoo的值,这样,a就是nfoo指向同一个Int对象了,函数中a=10的时候,发生什么?(还记得我上面讲到的那些概念么),int是不能更改的对象,于是,做了一个新的int对象,另a指向它(但是此时,被变量nfoo指向的对象,没有发生变化),于是在外面的感觉就是函数没有改变nfoo的值,看起来像C++中的传值方式。
可变对象参数调用
12345
def ChangeList( a ): a[0] = 10lstFoo = [2]ChangeList(lstFoo )print nfoo #结果是[10]
当传递给ChangeList的时候,变量仍旧按照“传值”的方式,复制了变量lstFoo 的值,于是a和lstFoo 指向同一个对象,但是,list是可以改变的对象,对a[0]的操作,就是对lstFoo指向的对象的内容的操作,于是,这时的a[0] = 10,就是更改了lstFoo 指向的对象的第一个元素,所以,再次输出lstFoo 时,显示[10],内容被改变了,看起来,像C++中的按引用传递。
❸ Python的函数和参数
parameter 是函数定义的参数形式
argument 是函数调用时传入的参数实体。
对于函数调用的传参模式,一般有两种:
此外,
也是关键字传参
python的函数参数定义一般来说有五种: 位置和关键字参数混合 , 仅位置参数 , 仅关键字参数 , 可变位置参数 , 可变关键字参数 。其中仅位置参数的方式仅仅是一个概念,python语法中暂时没有这样的设计。
通常我们见到的函数是位置和关键字混合的方式。
既可以用关键字又可以用位置调用
或
这种方式的定义只能使用关键字传参的模式
f(*some_list) 与 f(arg1, arg2, ...) (其中some_list = [arg1, arg2, ...])是等价的
网络模块request的request方法的设计
多数的可选参数被设计成可变关键字参数
有多种方法能够为函数定义输出:
非常晦涩
如果使用可变对象作为函数的默认参数,会导致默认参数在所有的函数调用中被共享。
例子1:
addItem方法的data设计了一个默认参数,使用不当会造成默认参数被共享。
python里面,函数的默认参数被存在__default__属性中,这是一个元组类型
例子2:
在例子1中,默认参数是一个列表,它是mutable的数据类型,当它写进 __defauts__属性中时,函数addItem的操作并不会改变它的id,相当于 __defauts__只是保存了data的引用,对于它的内存数据并不关心,每次调用addItem,都可以修改 addItem.__defauts__中的数据,它是一个共享数据。
如果默认参数是一个imutable类型,情况将会不一样,你无法改变默认参数第一次存入的值。
例子1中,连续调用addItem('world') 的结果会是
而不是期望的
❹ Python中的参数有哪两种类型
在Python中,有两种参数类型:位置参数和关键字参数。它们的用法和使用注意事项如下:
位置参数
位置参数是最常用的参数类型。它是函数定义时声明参数的顺序。在调用函数时,必须按照定义的顺序传递参数。如果不档扰按照顺序传递,会导致程序错误。例如:
def hello(name, message):
print(message + ', ' + name + '!')
hello('Tom', 'Hello')
在这个例子中,'Tom' 是位置参数 name 的值,'Hello' 是位置参数 message 的值。调用函数时必须按照函数定义时的顺序传递参数。
关键字参数
关键字参数是指在函数调用时,通过关键字指定参数的值。与位置参数不同,关键字参数可以不按照函数定消绝义时的顺序进行传递。例如:
def hello(name, message):
print(message + ', ' + name + '!')
hello(message='Hello', name='Tom')
在这个例子中,'Tom' 是关键字参数 name 的值,'Hello' 是关键字参数 message 的值。注意,这里的关键字需要与函数定义时的参数名相同。
使用注意事项
1. 函数定义时使用默认参数
定义函数时,可以给参数设置默认值。这样,调用函数时不传递该参数,则使用默认值。例如:
def hello(name, message='Hello'):
print(message + ', ' + name + '!')
hello('Tom')
在这个例子中,因为 message 参数设置了默认值,调用函数时可以只传递 name 参数。
2. 位置参数和关键字参数混合使用
在函数调用时,可以使用位置参数和关键字参数混合使用。但要注意,在关键字参数之后,只能使用关键字参数。例如:
def hello(name, message):
print(message + ', ' + name + '!')
hello('Tom', message='Hello')
在这个例子中,'Tom' 是位置参数 name 的值,'Hello' 是关键字参数 message 的值。关键字参数要在位置参数之后传递。
Python中的参数类型有位置参数和关键字参数。使用位置参数时,必须按照函数定义时行桥旦的顺序传递参数。关键字参数可以不按照顺序传递,并且需要使用关键字指定参数的值。同时,在函数定义时,可以设置默认参数。在函数调用时,可以混合使用位置参数和关键字参数,但要遵循一定的顺序和规则。
希望我的回答能够帮助到您!
❺ python 函数参数类型
python 的函数参数类型分为4种:
1.位置参数:调用函数时根据函数定义的参数位置来传递参数,位置参数也可以叫做必要参数,函数调用时必须要传的参数。
当参数满足函数必要参数传参的条件,函数能够正常执行:
add(1,2) #两个参数的顺序必须一一对应,且少一个参数都不可以
当我们运行上面的程序,输出:
当函数需要两个必要参数,但是调用函数只给了一个参数时,程序会抛出异常
add(1)
当我们运行上面的程序,输出:
当函数需要两个必要参数,但是调用函数只给了三个参数时,程序会抛出异常
add(1,2,3)
当我们运行上面的程序,输出
2.关键字参数:用于函数调用,通过“键-值”形式加以指定。可以让函数更加清晰、容易使用,同时也清除了参数的顺序需求。
add(1,2) # 这种方式传参,必须按顺序传参:x对应1,y对应:2
add(y=2,x=1) #以关健字方式传入参数(可以不按顺序)
正确的调用方式
add(x=1, y=2)
add(y=2, x=1)
add(1, y=2)
以上调用方式都是允许的,能够正常执行
错误的调用方式
add(x=1, 2)
add(y=2, 1)
以上调用都会抛出SyntaxError 异常
上面例子可以看出:有位置参数时,位置参数必须在关键字参数的前面,但关键字参数之间不存在先后顺序的
3.默认参数:用于定义函数,为参数提供默认值,调用函数时可传可不传该默认参数的值,所有位置参数必须出现在默认参数前,包括函数定义和调用,有多个默认参数时,调用的时候,既可以按顺序提供默认参数,也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上
默认参数的函数定义
上面示例第一个是正确的定义位置参数的方式,第二个是错误的,因为位置参数在前,默认参数在后
def add1(x=1,y) 的定义会抛出如下异常
默认参数的函数调用
注意:定义默认参数默认参数最好不要定义为可变对象,容易掉坑
不可变对象:该对象所指向的内存中的值不能被改变,int,string,float,tuple
可变对象,该对象所指向的内存中的值可以被改变,dict,list
这里只要理解一下这个概念就行或者自行网络,后续会写相关的专题文章讲解
举一个简单示例
4.可变参数区别:定义函数时,有时候我们不确定调用的时候会多少个参数,j就可以使用可变参数
可变参数主要有两类:
*args: (positional argument) 允许任意数量的可选位置参数(参数),将被分配给一个元组, 参数名前带*,args只是约定俗成的变量名,可以替换其他名称
**kwargs:(keyword argument) 允许任意数量的可选关键字参数,,将被分配给一个字典,参数名前带**,kwargs只是约定俗成的变量名,可以替换其他名称
*args 的用法
args 是用来传递一个非键值对的可变数量的参数列表给函数
语法是使用 符号的数量可变的参数; 按照惯例,通常是使用arg这个单词,args相当于一个变量名,可以自己定义的
在上面的程序中,我们使用* args作为一个可变长度参数列表传递给add()函数。 在函数中,我们有一个循环实现传递的参数计算和输出结果。
还可以直接传递列表或者数组的方式传递参数,以数组或者列表方式传递参数名前面加(*) 号
理解* * kwargs
**kwargs 允许你将不定长度的键值对, 作为参数传递给函数,这些关键字参数在函数内部自动组装为一个dict
下篇详细讲解 *args, **kwargs 的参数传递和使用敬请关注
❻ 【Python】浅谈python中的json
一 前言
最近一直在做开发相关的工作--基于Django的web 平台,其中需要从model层传输数据到view 层做数据展示或者做业务逻辑处理。我们采用通用的Json格式--Json(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于阅读和程序解析。
二 认识Json
2.1 Json 结构
常见的Json格式为 “名称/值”对的集合,其中 值可以是对象,列表,字典,字符串等等。比如
backup_data = {"back_to_host": "dbbk0",
"ip_address": "10.10.20.3",
"host_name": "rac4",
"port": 3306}
2.2 使用Json
Python的Json模块序列化与反序列化的过程分别是 编码和解码。这两个过程涉及到两组不同的函数
编码 把一个Python对象编码转换成Json字符串,json.mps(data)/json.mp(data,file_handler)
解码 把Json格式字符串解码转换成Python对象,json.loads(data)/json.load(file_handler)
在python中要使用Json模块做相关操作,必须先导入:
import Json
2.3 主要函数
编码函数主要有 json.mps(data)/json.mp(data,file_handler)
json.mps()的参数是将python对象转换为字符串,如使用json.mps序列化的对象json_mps=json.mps({'a':1, 'b':2}) ,json_mps='{"b": 2, "a": 1}'
json.mp 是将内置类型序列化为json对象后写入文件。
解码函数主要由json.loads(data)/json.load(file_handler)
json.loads的参数是内存对象,把Json格式字符串解码转换成Python对象,json_loads=json.loads(d_json) #{ b": 2, "a": 1},使用load重新反序列化为dict
json.load()的参数针对文件句柄,比如本地有一个文件/tmp/test.json json_load=json.load(open('/tmp/test.json'))
具体案例参考如下:
In [3]: data={"back_to_host": "rac1",
...: "ip_address": "10.215.20.3",
...: "host_name": "rac3",
...: "port": 3306}
In [7]: json_str=json.mps(data)
In [8]: print json_str
{"ip_address": "10.215.20.3", "back_to_host": "rac1", "host_name": "rac3", "port": 3306}
In [9]: json_loads=json.load(json_str)
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-9-180506f16431> in <mole>()
----> 1 json_loads=json.load(json_str)
/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/json/__init__.pyc in load(fp, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
284
285 ""
注意 从上面的报错信息来看 json.loads 传参是字符串类型,并不是文件句柄,没有 read()属性。
In [10]: json_loads=json.loads(json_str)
In [11]: print json_loads
{u'back_to_host': u'rac1', u'ip_address': u'10.215.20.3', u'host_name': u'rac3', u'port': 3306}
In [12]: type(json_loads)
Out[12]: dict
In [13]: type(json_str)
Out[13]: str
利用mp 将数据写入 mp.json
In [17]: with open('/tmp/mp.json','w') as f:
...: json.mp(json_str,f)
...:
yangyiDBA:~ yangyi$ cat /tmp/mp.json
"{\"ip_address\": \"10.10.20.3\", \"back_to_host\": \"rac1\", \"host_name\": \"rac3\", \"port\": 3306}"
yangyiDBA:~ yangyi$
利用json.load 将mp.sjon的数据读出来并赋值给 data
In [18]: with open('/tmp/mp.json','r') as f:
...: data=json.load(f)
...:
In [19]: print data
{"ip_address": "10.10.20.3", "back_to_host": "rac1", "host_name": "rac3", "port": 3306}
三 小结
本文算是一篇学习笔记,主要对比了json.loads/json.load , json.mps/ json.mp 的使用差异 ,方便以后更好的使用json 。
以上为本次分享内容,感谢观看。
❼ 简单谈谈Python中函数的可变参数
简单谈谈Python中函数的可变参数
在Python中定义函数,可以用必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数和关键字参数。
可变参数( * )
可变参数,顾名思义,它的参数是可变的,比如列表、字典等。如果我们需要函数处理可变数量参数的时候,就可以使用可变参数。
我们在查看很多Python源码时,经常会看到 某函数(*参数1, **参数2)这样的函数定义,这个*参数和**参数就是可变参数,一时会让人有点费解。其实只要把函数可变参数的定义搞清楚了,就不难理解了。
当我们不知道需要用几个参数来定义函数的时候,可变参数就可以大展手脚了。
在Python里,带 * 的参数就是用来接受可变数量参数的。
如果一个函数定义如下:
def functionTest(*args):
....
....
....
调用时我们可以的这样调用:
functionTest(1)
或者
functionTest(1,2)
或者
functionTest(1,2,3)
后面可以传入多个参数。
看段实例代码,观察下*是怎么具体应用的吧:
def get_sum(*numbers):
sum = 0
for n in numbers:
sum += n
return sum
#在这里写下你的代码来调用get_sum来求5个数字的和,并输出这个结果
print (get_sum(1,2,3,4,5))
结果会是什么呢?大家可以自己动手操作起来看下,以就是关于Python中函数可变参数的全部内容,希望这篇文章对大家学习或使用python能有所帮助