导航:首页 > 编程语言 > python抓取异步

python抓取异步

发布时间:2023-10-16 12:34:55

1. 从零开始学python-使用Selenium抓取动态网页数据

AJAX(Asynchronouse JavaScript And XML:异步JavaScript和XML)通过在后台与服务器进行少量数据交换,Ajax 可以使网页实现异步更新,这意味着可以在不重新加载整个网页的情况下,对网页的某部分进行局部更新。传统的网页(不使用Ajax)如果需要更新内容,必须重载整个网页页面。

因为传统的网页在传输数据格式方面,使用的是 XML 语法,因此叫做 AJAX ,其实现在数据交互基本上都是使用 JSON 。使用AJAX加载的数据,即使使用了JS将数据渲染到了浏览器中,在 右键->查看网页源代码 还是不能看到通过ajax加载的数据,只能看到使用这个url加载的html代码。

法1:直接分析ajax调用的接口。然后通过代码请求这个接口。

法2:使用Selenium+chromedriver模拟浏览器行为获取数据。

Selenium 相当于是一个机器人。可以模拟人类在浏览器上的一些行为,自动处理浏览器上的一些行为,比如点击,填充数据,删除cookie等。 chromedriver 是一个驱动 Chrome 浏览器的驱动程序,使用他才可以驱动浏览器。当然针对不同的浏览器有不同的driver。以下列出了不同浏览器及其对应的driver:

现在以一个简单的获取网络首页的例子来讲下 Selenium 和 chromedriver 如何快速入门:


参考:Selenium的使用


直接直接分析ajax调用的接口爬取

selenium结合lxml爬取

2. Python 异步任务队列Celery 使用

在 Python 中定义 Celery 的时候,我们要引入 Broker,中文翻译过来就是“中间人”的意思。在工头(生产者)提出任务的时候,把所有的任务放到 Broker 里面,在 Broker 的另外一头,一群码农(消费者)等着取出一个个任务准备着手做。这种模式注定了整个系统会是个开环系统,工头对于码农们把任务做的怎样是不知情的。所以我们要引入 Backend 来保存每次任务的结果。这个 Backend 也是存储任务的信息用的,只不过这里存的是那些任务的返回结果。我们可以选择只让错误执行的任务返回结果到 Backend,这样我们取回结果,便可以知道有多少任务执行失败了。

其实现架构如下图所示:

可以看到,Celery 主要包含以下几个模块:

celery可以通过pip自动安装。

broker 可选择使用RabbitMQ/redis,backend可选择使用RabbitMQ/redis/MongoDB。RabbitMQ/redis/mongoDB的安装请参考对应的官方文档。

------------------------------rabbitmq相关----------------------------------------------------------

官网安装方法: http://www.rabbitmq.com/install-windows.html

启动管理插件:sbin/rabbitmq-plugins enable rabbitmq_management 启动rabbitmq:sbin/rabbitmq-server -detached

rabbitmq已经启动,可以打开页面来看看 地址: http://localhost:15672/#/

用户名密码都是guest 。进入可以看到具体页面。 关于rabbitmq的配置,网上很多 自己去搜以下就ok了。

------------------------------rabbitmq相关--------------------------------------------------------

项目结构如下:

使用前,需要三个方面:celery配置,celery实例,需执行的任务函数,如下:

Celery 的配置比较多,可以在 官方配置文档: http://docs.celeryproject.org/en/latest/userguide/configuration.html 查询每个配置项的含义。

当然,要保证上述异步任务and下述定时任务都能正常执行,就需要先启动celery worker,启动命令行如下:

启动beat ,执行定时任务时, Celery会通过celery beat进程来完成。Celery beat会保持运行, 一旦到了某一定时任务需要执行时, Celery beat便将其加入到queue中. 不像worker进程, Celery beat只需要一个即可。而且为了避免有重复的任务被发送出去,所以Celery beat仅能有一个。

命令行启动:

如果你想将celery worker/beat要放到后台运行,推荐可以扔给supervisor。

supervisor.conf如下:

3. python爬取大量数据(百万级)

当用python爬取大量网页获取想要的数据时,最重要的问题是爬虫中断问题,python这种脚本语言,一中断

进程就会退出,怎么在中断后继续上次爬取的任务就至关重要了。这里就重点剖析这个中断问题。

第一个问题: 简单点的用动态代理池就能解决,在爬取大量数据的时候,为了速度不受影响,建议使用一些缓

存的中间件将有效的代理 ip 缓存起来,并定时更新。这里推荐 github 这个仓库

https://github.com/jhao104/proxy_pool , 它会做ip有效性验证并将 ip 放入 redis ,不过实现过于复杂

了,还用到了 db ,个人觉得最好自己修改一下。困难点的就是它会使用别的请求来进行判断当前的ip是否

是爬虫,当我们过于聚焦我们的爬虫请求而忽略了其他的请求时,可能就会被服务器判定为爬虫,进而这个ip

会被列入黑名单,而且你换了ip一样也会卡死在这里。这种方式呢,简单点就用 selenium + chrome 一个一个

去爬,不过速度太慢了。还是自己去分析吧,也不会过复杂的。

第二个问题: 网络连接超时是大概率会遇到的问题,有可能是在爬取的时候本地网络波动,也有可能是爬

取的服务端对ip做了限制,在爬取到了一定量级的时候做一些延迟的操作,使得一些通用的 http 库超时

urllib )。不过如果是服务端动的手脚一般延迟不会太高,我们只需要人为的设置一个高一点的

timeout 即可(30 秒),最好在爬取开始的时候就对我们要用的爬取库进行一层封装,通用起来才好改

动。

第三个问题: 在解析大量静态页面的时候,有些静态页面的解析规则不一样,所以我们就必须得做好断点

续爬的准备了( PS : 如果简单的忽略错误可能会导致大量数据的丢失,这就不明智了)。那么在调试的过

程中断点续爬有个解决方案,就是生产者和消费者分离,生产者就是产生待爬 url 的爬虫,消费者就是爬取

最终数据的爬虫。最终解析数据就是消费者爬虫了。他们通过消息中间件连接,生产者往消息中间件发送待

爬取的目标信息,消费者从里面取就行了,还间接的实现了个分布式爬取功能。由于现在的消费中间件都有

ack 机制,一个消费者爬取链接失败会导致消息消费失败,进而分配给其他消费者消费。所以消息丢失的

概率极低。不过这里还有个 tips , 消费者的消费超时时间不能太长,会导致消息释放不及时。还有要开启

消息中间价的数据持久化功能,不然消息产生过多而消费不及时会撑爆机器内存。那样就得不偿失了。

第四个问题: 这种情况只能 try except catch 住了,不好解决,如果单独分析的话会耗费点时间。但在

大部分数据 (99%) 都正常的情况下就这条不正常抛弃就行了。主要有了第三个问题的解决方案再出现这

种偶尔中断的问就方便多了。

希望能帮到各位。

4. python用什么可以异步爬去数据

可以使用线程方式 在线程中爬取数据 主线程原来做控制 也可以使用多进程方式 用进程池方式

5. 如何用Python爬取数据

方法/步骤

6. python异步有哪些方式

yield相当于return,他将相应的值返回给调用next()或者send()的调用者,从而交出了CPU使用权,而当调用者再次调用next()或者send()的时候,又会返回到yield中断的地方,如果send有参数,还会将参数返回给yield赋值的变量,如果没有就和next()一样赋值为None。但是这里会遇到一个问题,就是嵌套使用generator时外层的generator需要写大量代码,看如下示例:
注意以下代码均在Python3.6上运行调试

#!/usr/bin/env python# encoding:utf-8def inner_generator():
i = 0
while True:
i = yield i if i > 10: raise StopIterationdef outer_generator():
print("do something before yield")
from_inner = 0
from_outer = 1
g = inner_generator()
g.send(None) while 1: try:
from_inner = g.send(from_outer)
from_outer = yield from_inner except StopIteration: breakdef main():
g = outer_generator()
g.send(None)
i = 0
while 1: try:
i = g.send(i + 1)
print(i) except StopIteration: breakif __name__ == '__main__':
main()041

为了简化,在Python3.3中引入了yield from

yield from

使用yield from有两个好处,

1、可以将main中send的参数一直返回给最里层的generator,
2、同时我们也不需要再使用while循环和send (), next()来进行迭代。

我们可以将上边的代码修改如下:

def inner_generator():
i = 0
while True:
i = yield i if i > 10: raise StopIterationdef outer_generator():
print("do something before coroutine start") yield from inner_generator()def main():
g = outer_generator()
g.send(None)
i = 0
while 1: try:
i = g.send(i + 1)
print(i) except StopIteration: breakif __name__ == '__main__':
main()

执行结果如下:

do something before coroutine start123456789101234567891011

这里inner_generator()中执行的代码片段我们实际就可以认为是协程,所以总的来说逻辑图如下:

我们都知道Python由于GIL(Global Interpreter Lock)原因,其线程效率并不高,并且在*nix系统中,创建线程的开销并不比进程小,因此在并发操作时,多线程的效率还是受到了很大制约的。所以后来人们发现通过yield来中断代码片段的执行,同时交出了cpu的使用权,于是协程的概念产生了。在Python3.4正式引入了协程的概念,代码示例如下:

import asyncio# Borrowed from http://curio.readthedocs.org/en/latest/[email protected] countdown(number, n):
while n > 0:
print('T-minus', n, '({})'.format(number)) yield from asyncio.sleep(1)
n -= 1loop = asyncio.get_event_loop()
tasks = [
asyncio.ensure_future(countdown("A", 2)),
asyncio.ensure_future(countdown("B", 3))]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()12345678910111213141516

示例显示了在Python3.4引入两个重要概念协程和事件循环,
通过修饰符@asyncio.coroutine定义了一个协程,而通过event loop来执行tasks中所有的协程任务。之后在Python3.5引入了新的async & await语法,从而有了原生协程的概念。

async & await

在Python3.5中,引入了aync&await 语法结构,通过”aync def”可以定义一个协程代码片段,作用类似于Python3.4中的@asyncio.coroutine修饰符,而await则相当于”yield from”。

先来看一段代码,这个是我刚开始使用async&await语法时,写的一段小程序。

#!/usr/bin/env python# encoding:utf-8import asyncioimport requestsimport time


async def wait_download(url):
response = await requets.get(url)
print("get {} response complete.".format(url))


async def main():
start = time.time()
await asyncio.wait([
wait_download("http://www.163.com"),
wait_download("http://www.mi.com"),
wait_download("http://www.google.com")])
end = time.time()
print("Complete in {} seconds".format(end - start))


loop = asyncio.get_event_loop()
loop.run_until_complete(main())

这里会收到这样的报错:

Task exception was never retrieved
future: <Task finished coro=<wait_download() done, defined at asynctest.py:9> exception=TypeError("object Response can't be used in 'await' expression",)>
Traceback (most recent call last):
File "asynctest.py", line 10, in wait_download
data = await requests.get(url)
TypeError: object Response can't be used in 'await' expression123456

这是由于requests.get()函数返回的Response对象不能用于await表达式,可是如果不能用于await,还怎么样来实现异步呢?
原来Python的await表达式是类似于”yield from”的东西,但是await会去做参数检查,它要求await表达式中的对象必须是awaitable的,那啥是awaitable呢? awaitable对象必须满足如下条件中其中之一:

1、A native coroutine object returned from a native coroutine function .

原生协程对象

2、A generator-based coroutine object returned from a function decorated with types.coroutine() .

types.coroutine()修饰的基于生成器的协程对象,注意不是Python3.4中asyncio.coroutine

3、An object with an await method returning an iterator.

实现了await method,并在其中返回了iterator的对象

根据这些条件定义,我们可以修改代码如下:

#!/usr/bin/env python# encoding:utf-8import asyncioimport requestsimport time


async def download(url): # 通过async def定义的函数是原生的协程对象
response = requests.get(url)
print(response.text)


async def wait_download(url):
await download(url) # 这里download(url)就是一个原生的协程对象
print("get {} data complete.".format(url))


async def main():
start = time.time()
await asyncio.wait([
wait_download("http://www.163.com"),
wait_download("http://www.mi.com"),
wait_download("http://www.google.com")])
end = time.time()
print("Complete in {} seconds".format(end - start))


loop = asyncio.get_event_loop()
loop.run_until_complete(main())27282930

好了现在一个真正的实现了异步编程的小程序终于诞生了。
而目前更牛逼的异步是使用uvloop或者pyuv,这两个最新的Python库都是libuv实现的,可以提供更加高效的event loop。

uvloop和pyuv

pyuv实现了Python2.x和3.x,但是该项目在github上已经许久没有更新了,不知道是否还有人在维护。
uvloop只实现了3.x, 但是该项目在github上始终活跃。

它们的使用也非常简单,以uvloop为例,只需要添加以下代码就可以了

import asyncioimport uvloop
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())123

7. python2.7怎么实现异步

改进之前
之前,我的查询步骤很简单,就是:
前端提交查询请求 --> 建立数据库连接 --> 新建游标 --> 执行命令 --> 接受结果 --> 关闭游标、连接
这几大步骤的顺序执行。
这里面当然问题很大:
建立数据库连接实际上就是新建一个套接字。这是进程间通信的几种方法里,开销最大的了。
在“执行命令”和“接受结果”两个步骤中,线程在阻塞在数据库内部的运行过程中,数据库连接和游标都处于闲置状态。
这样一来,每一次查询都要顺序的新建数据库连接,都要阻塞在数据库返回结果的过程中。当前端提交大量查询请求时,查询效率肯定是很低的。
第一次改进
之前的模块里,问题最大的就是第一步——建立数据库连接套接字了。如果能够一次性建立连接,之后查询能够反复服用这个连接就好了。
所以,首先应该把数据库查询模块作为一个单独的守护进程去执行,而前端app作为主进程响应用户的点击操作。那么两条进程怎么传递消息呢?翻了几天Python文档,终于构思出来:用队列queue作为生产者(web前端)向消费者(数据库后端)传递任务的渠道。生产者,会与SQL命令一起,同时传递一个管道pipe的连接对象,作为任务完成后,回传结果的渠道。确保,任务的接收方与发送方保持一致。
作为第二个问题的解决方法,可以使用线程池来并发获取任务队列中的task,然后执行命令并回传结果。
第二次改进
第一次改进的效果还是很明显的,不用任何测试手段。直接点击页面链接,可以很直观地感觉到反应速度有很明显的加快。
但是对于第二个问题,使用线程池还是有些欠妥当。因为,CPython解释器存在GIL问题,所有线程实际上都在一个解释器进程里调度。线程稍微开多一点,解释器进程就会频繁的切换线程,而线程切换的开销也不小。线程多一点,甚至会出现“抖动”问题(也就是刚刚唤醒一个线程,就进入挂起状态,刚刚换到栈帧或内存的上下文,又被换回内存或者磁盘),效率大大降低。也就是说,线程池的并发量很有限。
试过了多进程、多线程,只能在单个线程里做文章了。
Python中的asyncio库
Python里有大量的协程库可以实现单线程内的并发操作,比如Twisted、Gevent等等。Python官方在3.5版本里提供了asyncio库同样可以实现协程并发。asyncio库大大降低了Python中协程的实现难度,就像定义普通函数那样就可以了,只是要在def前面多加一个async关键词。async def函数中,需要阻塞在其他async def函数的位置前面可以加上await关键词。
import asyncio
async def wait():
await asyncio.sleep(2)
async def execute(task):
process_task(task)
await wait()
continue_job()
async def函数的执行稍微麻烦点。需要首先获取一个loop对象,然后由这个对象代为执行async def函数。
loop = asyncio.get_event_loop()
loop.run_until_complete(execute(task))
loop.close()
loop在执行execute(task)函数时,如果遇到await关键字,就会暂时挂起当前协程,转而去执行其他阻塞在await关键词的协程,从而实现协程并发。
不过需要注意的是,run_until_complete()函数本身是一个阻塞函数。也就是说,当前线程会等候一个run_until_complete()函数执行完毕之后,才会继续执行下一部函数。所以下面这段代码并不能并发执行。
for task in task_list:
loop.run_until_complete(task)
对与这个问题,asyncio库也有相应的解决方案:gather函数。
loop = asyncio.get_event_loop()
tasks = [asyncio.ensure_future(execute(task))
for task in task_list]
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
当然了,async def函数的执行并不只有这两种解决方案,还有call_soon与run_forever的配合执行等等,更多内容还请参考官方文档。
Python下的I/O多路复用
协程,实际上,也存在上下文切换,只不过开销很轻微。而I/O多路复用则完全不存在这个问题。
目前,Linux上比较火的I/O多路复用API要算epoll了。Tornado,就是通过调用C语言封装的epoll库,成功解决了C10K问题(当然还有Pypy的功劳)。
在Linux里查文档,可以看到epoll只有三类函数,调用起来比较方便易懂。
创建epoll对象,并返回其对应的文件描述符(file descriptor)。
int epoll_create(int size);
int epoll_create1(int flags);
控制监听事件。第一个参数epfd就对应于前面命令创建的epoll对象的文件描述符;第二个参数表示该命令要执行的动作:监听事件的新增、修改或者删除;第三个参数,是要监听的文件对应的描述符;第四个,代表要监听的事件。
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
等候。这是一个阻塞函数,调用者会等候内核通知所注册的事件被触发。
int epoll_wait(int epfd, struct epoll_event *events,
int maxevents, int timeout);
int epoll_pwait(int epfd, struct epoll_event *events,
int maxevents, int timeout,
const sigset_t *sigmask);
在Python的select库里:
select.epoll()对应于第一类创建函数;
epoll.register(),epoll.unregister(),epoll.modify()均是对控制函数epoll_ctl的封装;
epoll.poll()则是对等候函数epoll_wait的封装。
Python里epoll相关API的最大问题应该是在epoll.poll()。相比于其所封装的epoll_wait,用户无法手动指定要等候的事件,也就是后者的第二个参数struct epoll_event *events。没法实现精确控制。因此只能使用替代方案:select.select()函数。
根据Python官方文档,select.select(rlist, wlist, xlist[, timeout])是对Unix系统中select函数的直接调用,与C语言API的传参很接近。前三个参数都是列表,其中的元素都是要注册到内核的文件描述符。如果想用自定义类,就要确保实现了fileno()方法。
其分别对应于:
rlist: 等候直到可读
wlist: 等候直到可写
xlist: 等候直到异常。这个异常的定义,要查看系统文档。
select.select(),类似于epoll.poll(),先注册文件和事件,然后保持等候内核通知,是阻塞函数。
实际应用
Psycopg2库支持对异步和协程,但和一般情况下的用法略有区别。普通数据库连接支持不同线程中的不同游标并发查询;而异步连接则不支持不同游标的同时查询。所以异步连接的不同游标之间必须使用I/O复用方法来协调调度。
所以,我的大致实现思路是这样的:首先并发执行大量协程,从任务队列中提取任务,再向连接池请求连接,创建游标,然后执行命令,并返回结果。在获取游标和接受查询结果之前,均要阻塞等候内核通知连接可用。
其中,连接池返回连接时,会根据引用连接的协程数量,返回负载最轻的连接。这也是自己定义AsyncConnectionPool类的目的。
我的代码位于:bottle-blog/dbservice.py
存在问题
当然了,这个流程目前还一些问题。
首先就是每次轮询拿到任务之后,都会走这么一个流程。
获取连接 --> 新建游标 --> 执行任务 --> 关闭游标 --> 取消连接引用
本来,最好的情况应该是:在轮询之前,就建好游标;在轮询时,直接等候内核通知,执行相应任务。这样可以减少轮询时的任务量。但是如果协程提前对应好连接,那就不能保证在获取任务时,保持各连接负载均衡了。
所以这一块,还有工作要做。
还有就是epoll没能用上,有些遗憾。
以后打算写点C语言的内容,或者用Python/C API,或者用Ctypes包装共享库,来实现epoll的调用。
最后,请允许我吐槽一下Python的epoll相关文档:简直太弱了!!!必须看源码才能弄清楚功能。

阅读全文

与python抓取异步相关的资料

热点内容
用编译语言开发软件的过程 浏览:867
exe怎么知道源码 浏览:387
计算机怎么实现可编程的 浏览:494
轩辕传奇如何查看玩过的服务器 浏览:41
凌阳单片机选型 浏览:480
android手机hosts 浏览:97
路由器l2tp服务器地址是什么 浏览:160
做解压手套视频 浏览:620
退役命令文件 浏览:676
linux递归查找文件 浏览:245
哪个app上才能看到免费的名门挚爱 浏览:839
mysql查看表字段的命令 浏览:523
ios里的文件夹怎么用 浏览:166
压缩银行开户时间表 浏览:429
银行人员如何解压 浏览:829
newfile命令快捷键 浏览:569
阿里云物理服务器 浏览:955
灵狐视频app哪个好 浏览:259
大厂退役程序员自述 浏览:254
linux命令watch 浏览:889