导航:首页 > 编程语言 > python中如何显示图例

python中如何显示图例

发布时间:2023-10-18 02:03:53

❶ 见图。python matplotlib 子图图例不显示完全。怎么解决

ax[0].legend(),ax[1].legend(),直接使用plt.legend()一般只会出现一个

❷ python中图例的位置怎么手动调整

1.最近遇到一个问题,关于图例legend如何画在图外的问题,并以适合的比例显示出来。

2.首先传统的做法如下,这种方式并不能满足我的要求,而且是显示在图内。

ax1.legend(loc='center left', bbox_to_anchor=(0.2, 1.12),ncol=3)1

loc表示图例的位置,有多种形式:

‘North’ 图例标识放在图顶端
‘South’ 图例标识放在图底端
‘East’ 图例标识放在图右方
‘West’ 图例标识放在图左方
‘NorthEast’ 图例标识放在图右上方(默认)
‘NorthWest 图例标识放在图左上方
‘SouthEast’ 图例标识放在图右下角
‘SouthWest’ 图例标识放在图左下角12345678

有人说简单,有相同的方式,如下经测试不行,可能是本人用的python版本不行,所用的方式就是和前面一样,采用如下的方式来替换上面的legend位置。

‘NorthOutside’ 图例标识放在图框外侧上方
‘SouthOutside’ 图例标识放在图框外侧下方
‘EastOutside’ 图例标识放在图框外侧右方
‘WestOutside’ 图例标识放在图框外侧左方
‘NorthEastOutside’ 图例标识放在图框外侧右上方
‘NorthWestOutside’ 图例标识放在图框外侧左上方
‘SouthEastOutside’ 图例标识放在图框外侧右下方
‘SouthWestOutside’ 图例标识放在图框外侧左下方
(以上几个将图例标识放在框图外)
‘Best’ 图标标识放在图框内不与图冲突的最佳位置
‘BestOutside’ 图标标识放在图框外使用最小空间的最佳位置1234567891011

bbox_to_anchor:表示legend的位置,前一个表示左右,后一个表示上下。当使用这个参数时。loc将不再起正常的作用,ncol=3表示图例三列显示。

3.有人说要解决这个问题可以采用对坐标轴放大或是缩小的方式,经本人测试可以行,但是,放大缩小的比率不让人满意,且很难控制到适合的位置。有兴趣可以参考链接,最终得出此方法不行。

4.那么就没有办法了吗?NO.NO,请看下面,最终完成如下。

这就是本人要的效果,不废话,具体做法如下

box = ax1.get_position()
ax1.set_position([box.x0, box.y0, box.width , box.height* 0.8])12

首先按上面的方式,如果你想将图例放上面就box.height*0.8,放右边就box.width*0.8其它方式一样。同时配合下面来使用。

ax1.legend(loc='center left', bbox_to_anchor=(0.2, 1.12),ncol=3)1

主要是bbox_to_anchor的使用,自己可以修改参数试下,good luck for you.

阅读全文

版权声明:原创文章,未经博主

❸ python matlibplot 怎样画图例

用于添加图例的函数是plt.legend(),我们通过例子来对其进行介绍。

%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np

#多数据并列柱状图
mpl.rcParams["font.sans-serif"]=["SimHei"]
mpl.rcParams["axes.unicode_minus"]=False
x = np.arange(6)
y1 = [23,5,14,27,18,14]
y2 = [10,27,25,18,23,16]
tick_label = ["A","B","C","D","E","F"]
bar_width = 0.35
plt.bar(x,y1,bar_width,align="center",label="班级A",alpha=0.5)
plt.bar(x+bar_width,y2,bar_width,align="center",label="班级B",alpha=0.5)
plt.xlabel("成绩等级")
plt.ylabel("人数")
plt.xticks(x+bar_width/2,tick_label)

plt.legend(bbox_to_anchor=(1,1),#图例边界框起始位置
loc="upper right",#图例的位置
ncol=1,#列数
mode="None",#当值设置为“expend”时,图例会水平扩展至整个坐标轴区域
borderaxespad=0,#坐标轴和图例边界之间的间距
title="班级",#图例标题
shadow=False,#是否为线框添加阴影
fancybox=True)#线框圆角处理参数
plt.show()

效果如图所示

❹ 数据蛙-Python进阶

这是漫长的一周,本周完成了Python的进阶模块,主要是pandas、numpy、matplotlib、seaborn、pyecharts这些模块的学习以及一个实际的案例:商品销售情况分析,之前一直觉得课程难度不够,但到这一周难度就大大提高了。尤其是案例练习中的RFM模型和用户生命周期建立,看懂不难但是自差首己写一直出错,在不断出错不断尝试中知识得到了积累,另外可视化部分没有什么练习题,希望后面可以加上一些这方面的练习,接下来分模块来总结一下学习的内容。

重新设置索引:df.set_index()

Series格式转换为DataFrame:df.to_frame()

文件读取:pd.read_csv(filepath, header = 0,skiprows=[1,2]) 

使用位禅庆源置做索引:df.loc[0]        使用列表做索引:df.loc[[0,1,2]]

使用切片做索引:df.loc[0:4]        使用bool类型索引:df[df['年龄']>30]

loc 是基于索引值的,切片是左闭右闭的

iloc 是基于位置的,切片是左闭右开的

修改列索引:df.rename(columns={'姓名':'name', '年龄':'age'},inplace=True)

替换一个值:df.replace({'name':{'小明':'xiaoming'}},inplace=True)

对数据进行排序:df.sort_values('age')

累加求和:df.cumsum(0)

删除列:del df['player']         删除行:df.drop(labels=0) labels 是行列的名字

数据拼接:pd.concat([left,right],axis=1)

# 指定列进行关联,默认是 inner join     result = pd.merge(left,right,on='key')

#多个关联条件:result = pd.merge(left, right, on=['key1', 'key2'])

#左连接:result = pd.merge(left, right, how='left', on=['key1', 'key2'])

# 列名不一样的关联:pd.merge(left,right,left_on = ['key1','key2'],right_on = ['key3','key4'])

#单个分组:groups = df.groupby('district')

# 作用多个聚合函数:groups.agg([np.mean,np.sum,np.std])

# 针对具体列聚合 groups.age.agg([np.mean,np.sum,np.std])

# 不同列不同聚合函数 groups.agg({"age":np.mean,"novip_buy_times":np.sum})

分组后该列值求和显示:groups['vip_buy_times'].transform('sum')

通常用于求占比:transform(lambda x: x /sum(x))

# 填充指定值:np.full([3,4],1)

# 起始为10,5为步长,30为结贺态尾取不到:np.arange(10, 30, 5)

#随机矩阵:np.random.random((2,3))

# 平均划分:np.linspace( 0, 2*pi, 100 )

# 类型及转换:vector.astype('float')

# 多维变一维:matrix.ravel()

# 矩阵的扩展:a = np.arange(0, 40, 10)    b = np.tile(a, (3, 5))    # 行变成3倍,列变成5倍

# 水平拼接:np.hstack((a,b))  竖直拼接:np.vstack((a,b))

# 竖直分割:np.hsplit(a,3)    #水平分割:np.vsplit(a,3)

8. Select the data in rows [3, 4, 8] and in columns ['animal', 'age'].

A:df.loc[df.index[[3,4,8]],['animal','age']]

行采用位置,列采用普通索引,这里利用index函数将位置变化为具体的普通索引,再利用loc函数

19. The 'priority' column contains the values 'yes' and 'no'. Replace this column with a column of boolean values: 'yes' should be True and 'no' should be False

A1:df['priority'].replace(['yes','no'],[True,False],inplace=True) 用replace函数替换

A2:df['priority'] = df['priority'].map({'yes': True, 'no': False}) 用map函数替换

最大最小值的索引:df.idxmax、df.idxmin

找出最大最小的前N个数:nlargest()和nsmallest() 

将原表分组 并设置分段区间 pd.cut(df['A'], np.arange(0, 101, 10))

resample函数 日期重采样:s.resample('M').mean()

TimeGrouper 重组:s.groupby(pd.TimeGrouper('4M')).idxmax()

split 分割函数:temp = df['From_To'].str.split('_', expand=True) True为DataFrame

两个DataFrame拼接用join:df = df.join(temp)

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签

plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

%matplotlib inline 直接显示

折线图:plt.plot(x,y,color = 'r')

柱状图:plt.bar(x,y)  plt.barh(x,y) 多个bar x设置不同 堆积图 bottom设置不同

散点图:plt.scatter(x, y, c=colors, alpha=0.5, s = area)

直方图:plt.hist(a,bins= 20) bin代表分隔的最小单位

plt.legend() 显示图例

for a,b in zip(X+W[i],data[i]):

    plt.text(a,b,"%.0f"% b,ha="center",va= "bottom") 添加数据标签

plt.annotate('注释文本',xy=(1, np.sin(1)),xytext=(2, 0.5), fontsize=16,arrowprops=dict(arrowstyle="->")) 添加注释文本

plt.xlabel("Group") x轴标题

plt.ylabel("Num") y轴标题

fig, axes = plt.subplots(nrows=2, ncols=2,facecolor='darkslategray')  绘制多个图形

axes[0,0] axes[0,1] axes[1,0] axes[1,1]

pylab.rcParams['figure.figsize'] = (10, 6) # 调整图片大小

动态展示图表

from pyecharts.charts import Bar

from pyecharts import options as opts

** pyecharts 绘图的五个步骤:**

创建图形对象:bar = Bar()

添加绘图数据:bar.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])

                         bar.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])

                         bar.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])

配置系列参数:对标签、线型等的一些设置

配置全局参数:bar.set_global_opts(title_opts=opts.TitleOpts(title="销售情况"))

渲染图片:生成本地 HTML 文件 bar.render("mycharts.html")  bar.render()

notebook 渲染:bar.render_notebook()

bar = (Bar()

    .add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])

    .add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])

    .add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])

    .set_global_opts(title_opts=opts.TitleOpts(title="某商场销售情况"))

)

bar.render_notebook()

柱状图:Bar()

条形图:bar.reversal_axis() #翻转XY轴,将柱状图转换为条形图

折线图:from pyecharts.charts import Line  line=Line()

饼图:from pyecharts.charts import Page, Pie    Pie() 

转换日期类型:df['order_dt']=pd. to_datetime (df.order_dt,format="%Y%m%d")

将日期转换为月为单位:df['month']=df.order_dt.values. astype('datetime64[M]') 所有日期显示为当月第一天

去除日期单元值:order_diff/ np.timedelta64(1,'D')

过滤部分极值:grouped_user.sum() .query('order_procts<100') .order_amount

数据透视表:rfm=df.pivot_table( index ='user_id', values =['order_procts','order_amount'], aggfunc ={'order_amount':'sum','order_procts':'sum'})

map() 方法是pandas.series.map()方法, 对DF中的元素级别的操作, 可以对df的某列或某多列

applymap(func) 也是DF的属性, 对整个DF所有元素应用func操作

purchase_r=pivoted_counts.applymap(lambda x: 1 if x>1 else np.NaN if x==0 else 0)

apply(func) 是DF的属性, 对DF中的行数据或列数据应用func操作,也可用于Series

apply(lambda x:x.cumsum()/x.sum())    累计占比

apply(lambda x:x/x.sum(),axis=0)     每一列中每行数据占比

下周开始进入数据分析思维的课程,很期待后面的课程以及项目,加油!

❺ 如何在python界面显示图片

wxpython:
# 使用wx.Image得到对象
bmp = wx.Image('bitmaps/image.bmp', wx.BITMAP_TYPE_BMP).ConvertToBitmap()
gif = wx.Image('bitmaps/image.gif', wx.BITMAP_TYPE_GIF).ConvertToBitmap()
png = wx.Image('bitmaps/image.png', wx.BITMAP_TYPE_PNG).ConvertToBitmap()
jpg = wx.Image('bitmaps/image.jpg', wx.BITMAP_TYPE_JPEG).ConvertToBitmap()

# 把它们显示出来
pos = 10
wx.StaticBitmap(frame, -1, bmp, (10, pos), (bmp.GetWidth(), bmp.GetHeight()))

pos = pos + bmp.GetHeight() + 10
wx.StaticBitmap(frame, -1, gif, (10, pos), (gif.GetWidth(), gif.GetHeight()))

pos = pos + gif.GetHeight() + 10
wx.StaticBitmap(panel, -1, png, (10, pos), (png.GetWidth(), png.GetHeight()))

pos = pos + png.GetHeight() + 10
wx.StaticBitmap(frame, -1, jpg, (10, pos), (jpg.GetWidth(), jpg.GetHeight()))

具体的请根据你的实际情况修改,最好去http://www.wxpython.org/download.php#binaries
下载wxpython和wxpython demo看看,这个demo很强大的。

❻ Python matplotlib用绘制雷达图实战案例

import pandasas pd

import matplotlib.pyplotas plt

import numpyas np

plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']

plt.rcParams['axes.unicode_minus'] =False

data = pd.read_csv(r'D:\bigData\radarMap.csv')

data = data.dropna(axis=1)

data = data.set_index('性能评价指标')

data = data.T

data.index.name ='品牌'

def plot_radar(data, feature):

columns = ['动力性', '燃油经济性', '制动性', '操控稳定性', '行驶平顺性', '通过性', '安全性', '环保性', '方便性', '舒适性', '经济性', '容量性']

colors = ['r', 'g', 'y']

# 设置雷达图的角度,用于平分切开一明旅个平面

    # linspace(1,10,x) 创建1-10的等差数组,个数为 x,默认50个;endpoint参数指定是否包含终值,默认值为True,即包含终值。

    angles = np.linspace(0.1 * np.pi, 2.1 * np.pi, len(columns), endpoint=False)

# 使雷达图封闭起来

    angles = np.concatenate((angles, [angles[0]]))

# figsize:指定figure的宽和高,单位为英寸;

    figure = plt.figure(figsize=(6, 6))

# 设置为极坐标格式;subplot(nrows,ncols,sharex,sharey,subplot_kw,**fig_kw)创建单个子图,下面两句效果相同

    ax = figure.add_subplot(111, polar=True)

for i, cin enumerate(feature):

stats = data.loc[c]

stats = np.concatenate((stats, [stats[0]]))

ax.plot(angles, stats, '-', linewidth=2, c=colors[i], label=str(c))

ax.fill(angles, stats, color=colors[i], alpha=0.75)

# bbox_to_anchor这个参数,可以把图例放在图外面

    # bbox_to_anchor:表示legend的位置,前一个表示左右,后一个表示上下。

    # 当使用这个参数时。loc将不再起正常的作用,ncol=3表示图例三列显示。

    ax.legend(loc=4, bbox_to_anchor=(1.15, -0.07))

# 设置极轴范围

    ax.set_ylim(0, 10)

# ax.set_yticklabels([2, 4, 6, 8, 10])

    # 添加每个特质的标签

    columns = np.concatenate((columns, [columns[0]]))

ax.set_thetagrids(angles *180 / np.pi, columns, fontsize=12)

# 添加标题

    plt.title('汽车性能州纤指标雷达图')

plt.show()

return figure

figure = plot_radar(data, ['A品牌', 'B品牌', 'C品牌激迹凳'])

阅读全文

与python中如何显示图例相关的资料

热点内容
计算机怎么实现可编程的 浏览:494
轩辕传奇如何查看玩过的服务器 浏览:37
凌阳单片机选型 浏览:480
android手机hosts 浏览:97
路由器l2tp服务器地址是什么 浏览:160
做解压手套视频 浏览:620
退役命令文件 浏览:676
linux递归查找文件 浏览:245
哪个app上才能看到免费的名门挚爱 浏览:839
mysql查看表字段的命令 浏览:523
ios里的文件夹怎么用 浏览:166
压缩银行开户时间表 浏览:429
银行人员如何解压 浏览:829
newfile命令快捷键 浏览:569
阿里云物理服务器 浏览:955
灵狐视频app哪个好 浏览:259
大厂退役程序员自述 浏览:254
linux命令watch 浏览:889
加密币哪些平台不撤出中国 浏览:553
max加线命令 浏览:424