Ⅰ python 画好看的云词图
词云图是数据分析中比较常见的一种可视化手段。词云图,也叫文字云,是对文本中出现频率较高的 关键词 予以视觉化的展现,出现越多的词,在词云图中展示越显眼。词云图过滤掉大量低频低质的文本信息,因此只要一眼扫过文本就可 领略文章主旨 。
例如👆上面这张图,看一眼就知道肯定是新华网的新闻。
那生成一张词云图的主要步骤有哪些?这里使用 Python 来实现,主要分三步:
首先是“结巴”中文分词 jieba 的安装。
对于英文文本,word_cloud 可以直接对文本源生成词云图。但是对中文的支持没有那么给力,所以需要先使用 jieba 对中文文本进行分词,把文章变成词语,然后再生成词云图。例如:
jieba.cut 分词:方法接受三个输入参数,sentence 需要分词的字符串;cut_all 用来控制是否采用全模式;HMM 用来控制是否使用 HMM 模型。
jieba.cut_for_search 分词:方法接受两个参数,sentence 需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细。
jieba.analyse.textrank 使用 TextRank 算法从句子中提取关键词。
然后安装 wordcloud 词云图库。
如果执行上面命令后,显示 success,那么恭喜你,安装成功了。
我就遇到了 Failed building wheel for wordcloud 的错误。于是先安装 xcode-select, 再安装 wordcloud 即可(无需安装 Xcode)。
wordcloud 库把词云当作一个 WordCloud 对象,wordcloud.WordCloud() 代表一个文本对应的词云,可以根据文本中词语出现的频率等参数绘制词云,绘制词云的形状、尺寸和颜色。
1、首先导入文本数据并进行简单的文本处理
2、分词
3、设置遮罩
注意:
1、默认字体不支持中文,如果需要显示中文,需要设置中文字体,否则会乱码。
2、设置遮罩时,会自动将图片非白色部分填充,且图片越清晰,运行速度越快
其中 WordCloud 是云词图最重要的对象,其主要参数描述如下:
效果如下图:
上小结是将文章中所有内容进行分词,输出了所有词,但很多时候,我们有进一步的需求。例如:
1、只需要前 100 个关键词就够了。
2、不需要五颜六色的词语,应与遮罩图片颜色一致。
100个关键词,我们在分词时使用 TextRank 算法从句子中提取关键词。
遮罩颜色可通过设置 WordCloud 的 color_func 属性。
最终效果如下:
Ⅱ python生成词云,要求频率越小生成的字词越大,老师的要求,请各位大佬解答,感谢,急急急!!!
按照常理可以实现,但是python是智能的,不能安装常理算。关注点有点偏,老师不是刁难学生,而是帮助学生进步。你可以去问问老师具体的思路,祝你取得更大的进步。
Ⅲ 使用python wordcloud库实现词云,教你两招轻松搞定
wordcloud库简介
python中的word cloud库是一个用来制作词云的第三方库
安装wordcloud 库
pip install wordcloud123
使用w = wordcloud.WordCloud() 创建一个词云对象
2.WordCloud() 参数介绍
3.实现效果
4.问题
并没有按照词云的样式展示,这里需要使用 jieba库进行分词
安装jieba库
pip install jieba
5.使用jieba库进行分词
6.效果
将txt文本中的内容生成词云
获取文件中的内容
f = open('./xxx.txt', 'r', encoding='utf-8')
text = f.read()
说明
encoding=‘utf-8’ 这个参数表示 读取的内容以utf-8的编码方式读取文件
如果没有这个参数,会出现如下的报错信息
Ⅳ 如何使用python来实现个性化词云的示例代码分享
#coding=utf-8
#usingpython27
fromosimportpath
fromPILimportImage
importnumpyasnp
importmatplotlib.pyplotasplt
fromwordcloudimportWordCloud,STOPWORDS,ImageColorGenerator
#d=path.dirname(__file__)
#Readthewholetext.
text=open(r'C:StudyPythonwordcloud_alice.txt').read()
#readthemask/colorimagetakenfrom
#http://jirkavinse.deviantart.com/art/quot-Real-Life-quot-Alice-282261010
alice_coloring=np.array(Image.open(r'C:StudyPythonwordcloud_alice_color.png'))
stopwords=set(STOPWORDS)
stopwords.add("said")
wc=WordCloud(background_color="white",max_words=2000,mask=alice_coloring,
stopwords=stopwords,max_font_size=40,random_state=42)
#generatewordcloud
wc.generate(text)
#createcoloringfromimage
image_colors=ImageColorGenerator(alice_coloring)
#show
plt.imshow(wc,interpolation="bilinear")
plt.axis("off")
plt.figure()
#recolorwordcloudandshow
#wecouldalsogivecolor_func=image_
plt.imshow(wc.recolor(color_func=image_colors),interpolation="bilinear")
plt.axis("off")
plt.figure()
plt.imshow(alice_coloring,cmap=plt.cm.gray,interpolation="bilinear")
plt.axis("off")
plt.show()
执行这个代码还需要两个文件, 网络知道不能上传, 可以用扣或者私我传给你
运行结果:
Ⅳ 为什么用python画的词云很模糊
cloud = WordCloud(
width=1000,height=600,
min_font_size=20,
max_words=200,
max_font_size=80
)
绘制词云的时候把图片的宽和高加大一点,然后字体也加大一点
Ⅵ python制作词云的时候怎么使文字密集一点
选用的词越多(max_words),样本越大(文本的长度),就越接近正态分布。
在正态分布的情况下,低频词就相对多(长尾定率)。
然后就是调整max_font_size与min_font_size以及relative_scaling了,这三个参数的取值对表观上的密集程度有影响。
如果max_words小,长尾不明显,词云中小字就少,很多地方没有词去填补空白,就显示得不密集。
如果max_font_size与min_font_size没拉开,低频词(长尾部分)就没有小到足够在高频词的空白中填入,字中空白就让整个云显得不密集。
最后调整relative_scaling使交叉方向的比例合适,一些词的空白处就能填入一些较短的低频词进一步减少空白。
Ⅶ python如何做词云 一步一步教你如何做
如果你之前没有编程基础,没关系。希望你不要限于浏览,而是亲自动手尝试一番。到完成的那一步,你不仅可以做出第一张词云图,而且这还将是你的第一个有用的编程作品。
1、请确保你的python环境没有问题,用的开发工具是VsCode,首先你要在Python扩展中安装python开发环境(当然,这不是为你的windows安装python)。
2、那么你还需要安装所需要的第三方库,那么在VSCode中并没有PyCharm那么专业,这里需要获得你自己的Python脚本位置。
3、我们可以发现里面有一个名为pip.exe文件,这个文件就是python官方给我们去安装python第三方库的一个程序,那么我们可以在VsCode的终端中就可以去通过它,这也是我们为什么要获取python安装位置的根本原因。
4、python做词云呢,需要导入的包有wordcloud和PIL,其中PIL(Python Image Library)是python平台图像处理标准库,功能是真的强大。首先需要读取文件 。
5、如果python引入无误,并代码无误,那么会弹出你生成的图片,该图片会储存在你的系统。