① python多元线性回归怎么计算
1、什么是多元线性回归模型?
当y值的影响因素不唯一时,采用多元线性回归模型。
y =y=β0+β1x1+β2x2+...+βnxn
例如商品的销售额可能不电视广告投入,收音机广告投入,报纸广告投入有关系,可以有 sales =β0+β1*TV+β2* radio+β3*newspaper.
2、使用pandas来读取数据
pandas 是一个用于数据探索、数据分析和数据处理的python库
[python]view plain
importpandasaspd
[html]view plain
<prename="code"class="python">#
data=pd.read_csv('/home/lulei/Advertising.csv')
#displaythefirst5rows
data.head()
上面代码的运行结果:
上面显示的结果类似一个电子表格,这个结构称为Pandas的数据帧(data frame),类型全称:pandas.core.frame.DataFrame.
pandas的两个主要数据结构:Series和DataFrame:
Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。
DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典。
[python]view plain
#displaythelast5rows
data.tail()
[html]view plain
#checktheshapeoftheDataFrame(rows,colums)
data.shape
(200,4)
3、分析数据
特征:
TV:对于一个给定市场中单一产品,用于电视上的广告费用(以千为单位)
Radio:在广播媒体上投资的广告费用
Newspaper:用于报纸媒体的广告费用
响应:
Sales:对应产品的销量
在这个案例中,我们通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有200个观测值,每一组观测对应一个市场的情况。
注意:这里推荐使用的是seaborn包。网上说这个包的数据可视化效果比较橡哗好看。其实seaborn也应该属于matplotlib的内部包。只是需要再次的单独安装。
[python]view plain
importseabornassns
importmatplotlib.pyplotasplt
#ots
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8)
plt.show()#注意必须加上这一句,祥橡否则无法显示梁宴行。
[html]view plain
这里选择TV、Radio、Newspaper作为特征,Sales作为观测值
[html]view plain
返回的结果:
[python]view plain
sns.pairplot(data,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',size=7,aspect=0.8,kind='reg')
plt.show()
直到这里整个的一次多元线性回归的预测就结束了。
6、改进特征的选择
在之前展示的数据中,我们看到Newspaper和销量之间的线性关系竟是负关系(不用惊讶,这是随机特征抽样的结果。换一批抽样的数据就可能为正了),现在我们移除这个特征,看看线性回归预测的结果的RMSE如何?
依然使用我上面的代码,但只需修改下面代码中的一句即可:
[python]view plain
#
feature_cols=['TV','Radio','Newspaper']
#
X=data[feature_cols]
#
#X=data[['TV','Radio','Newspaper']]#只需修改这里即可<prename="code"class="python"style="font-size:15px;line-height:35px;">X=data[['TV','Radio']]#去掉newspaper其他的代码不变
最后的到的系数与测度如下:
LinearRegression(_X=True, fit_intercept=True, normalize=False)
备注:
注:上面的结果是由train_test_spilit()得到的,但是我不知道为什么我的版本的sklearn包中居然报错:
处理方法:1、我后来重新安装sklearn包。再一次调用时就没有错误了。
2、自己写函数来认为的随机构造训练集和测试集。(这个代码我会在最后附上。)
[python]view plain
importrandom
[python]view plain
<spanstyle="font-family:microsoftyahei;">######自己写一个随机分配数的函数,分成两份,并将数值一次存储在对应的list中##########
deftrain_test_split(ylabel,random_state=1):
importrandom
index=random.sample(range(len(ylabel)),50*random_state)
list_train=[]
list_test=[]
i=0
forsinrange(len(ylabel)):
ifiinindex:
list_test.append(i)
else:
list_train.append(i)
i+=1
returnlist_train,list_test
###############对特征进行分割#############################
feature_cols=['TV','Radio','Newspaper']
X1=data[feature_cols]
② 求python支持向量机多元回归预测代码
Python 代码示例,使用 scikit-learn 库中的 SVR 类实现多元回归预测:
from sklearn.svm import SVR
import numpy as np
# 构造训练数据
X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([1, 2, 3])
# 创建模型并训练
clf = SVR(kernel='linear')
clf.fit(X, y)
# 进行预测
predictions = clf.predict(X)
print(predictions)
请注意,以上代码仅供参考,可能需要根据实际情况进行修改。
③ Python解决矩阵问题
下面是基于python3.4的数组矩阵输入方法:
1.import numpy as np
2.arr = [1,2,3,4,5,6,7,8,9]
3.matrix_a = np.array(arr)2.
4.手动定义一个空数组:arr =[],链表数组:a = [1,2,[1,2,3]]。
Python, 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。
Python是纯粹的自由软件,源代码和解释器CPython遵循GPL(GNUGeneral Public License)协议[2]。Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。
Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中[3]有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
7月20日,IEEE发布2017年编程语言排行榜:Python高居首位。
④ Python题目如图,求解!!!
题主你好,
代码:
------
希弊仿望可以帮野丛到租脊纤题主, 欢迎追问.
希望可以
⑤ 求python多元支持向量机多元回归模型最后预测结果导出代码、测试集与真实值R2以及对比图代码
这是一个多元支持向量机回归的模型,以下是一个参考的实现代码:
import numpy as npimport matplotlib.pyplot as pltfrom sklearn import svmfrom sklearn.metrics import r2_score
# 模拟数据
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(16))
# 分割数据
train_X = X[:60]
train_y = y[:60]
test_X = X[60:]
test_y = y[60:]
# 模型训练
model = svm.SVR(kernel='rbf', C=1e3, gamma=0.1)
model.fit(train_X, train_y)
# 预测结果
pred_y = model.predict(test_X)# 计算R2r2 = r2_score(test_y, pred_y)
# 对比图
plt.scatter(test_X, test_y, color='darkorange', label='data')
plt.plot(test_X, pred_y, color='navy', lw=2, label='SVR model')
plt.title('R2={:.2f}'.format(r2))
plt.legend()
plt.show()
上面的代码将数据分为训练数据和测试数据,使用SVR模型对训练数据进行训练,然后对测试数据进行预测。计算预测结果与真实值的R2,最后将结果画出对比图,以评估模型的效果。