导航:首页 > 编程语言 > python保险模型

python保险模型

发布时间:2023-11-18 22:45:03

python 金融分析 应该使用什么模型

链接:http://pan..com/s/1djPqbCXnQrRpW0dgi2MCJg

提取码:4591

华尔街学堂 python金融实务从入门到精通。最近,越来越多的研究员、基金经理甚至财务会计领域的朋友,向小编咨询:金融人需要学Python么?事实上在现在,这已经不是一个问题了。Python已成为国内很多顶级投行、基金、咨询等泛金融、商科领域的必备技能。中金公司、银河证券、南方基金、银华基金在招聘分析师岗位时,纷纷要求熟练掌握Python数据分析技能。

课程目录:

Python在金融资管领域中的应用

安装anaconda步骤

Python基础知识

Python基础金融分析应用

成为编程能手:Python知识进阶

利用Python实现金融数据收集、分析与可视化

......

⑵ python定义模型

学python的人都知道,python中一切皆是对象,如class生成的对象是对象,class本身也是对象,int是对象,str是对象,dict是对象...。所以,我很好奇,python是怎样实现这些对象的?带着这份好奇,我决定去看看python的源码,毕竟源码才是满足自己好奇心最直接的方法。

在object.h文件中,定义了两种数据结构PyObject和PyVarObject,代码如下:

1 #define PyObject_HEAD 2 Py_ssize_t ob_refcnt; 3 struct _typeobject *ob_type; 4 5 #define PyObject_VAR_HEAD 6 PyObject_HEAD 7 Py_ssize_t ob_size; 8 9 typedef struct _object {10 PyObject_HEAD11 } PyObject;12 13 typedef struct {14 PyObject_VAR_HEAD15 } PyVarObject;

这两种数据结构分别对应python的两种对象:固定长度对象和可变长度对象。python中的所有对象都属于这两种对象中的一种,如int,float是固定长度对象,list,str,dict是可变长度对象。从上面两种对象数据结构定义来看,可变长度对象和固定长度对象的头都是PyObject结构体,也就是说python中所有对象的开头都包含这个结构体,并且可以用PyObject *指针来访问任何对象,这种访问对象的方法在python的源码中随处可见。PyObject结构体包含两个成员,ob_refcnt和ob_type指针。ob_refcnt用来表示对象被引用的次数,当ob_refcnt == 0时,这个对象会被立即销毁;ob_type指针指向了一个_typeobject类型的结构体,表示对象所属的类型,也就是生成该对象的类型,这其实很类似于面向对象中类与实例的关系,PyObject是某个类的实例,ob_type表示这个类。但与面向对象不同的是,ob_type本身也是个对象,我们来看下_typeobject的定义:

1 typedef struct _typeobject { 2 PyObject_VAR_HEAD 3 const char *tp_name; /*类型名 */ 4 Py_ssize_t tp_basicsize, tp_itemsize; /* 实例化对象的大小 */ 5 6 /* 标准方法 */ 7 8 destructor tp_dealloc; 9 printfunc tp_print;10 getattrfunc tp_getattr;11 setattrfunc tp_setattr;12 cmpfunc tp_compare;13 reprfunc tp_repr;14 15 /* 标准类(数值类,列表类,dict类)方法*/16 17 PyNumberMethods *tp_as_number;18 PySequenceMethods *tp_as_sequence;19 PyMappingMethods *tp_as_mapping;20 21 /* 其它标准方法*/22 23 hashfunc tp_hash;24 ternaryfunc tp_call;25 reprfunc tp_str;26 getattrofunc tp_getattro;27 setattrofunc tp_setattro;28 ...
29 } PyTypeObject;

从上面定义来看,_typeobject的开头也包含了PyObject结构体,所以它也是一个对象,既然它也是一个对象,那么按照面向对象的理解,它又是谁来生成的呢?答案是所有PyTypeObject对象都是通过PyType_Type来生成的,包括PyType_Type本身,因为PyType_Type也是PyTypeObject对象,有点绕。PyType_Type的定义是通过将PyType_Type声明为全局静态变量实现的,具体如下:

1 PyTypeObject PyType_Type = { 2 PyVarObject_HEAD_INIT(&PyType_Type, 0) 3 "type", /* tp_name */ 4 sizeof(PyHeapTypeObject), /* tp_basicsize */ 5 sizeof(PyMemberDef), /* tp_itemsize */ 6 (destructor)type_dealloc, /* tp_dealloc */ 7 0, /* tp_print */ 8 0, /* tp_getattr */ 9 0, /* tp_setattr */10 0, /* tp_compare */11 (reprfunc)type_repr, /* tp_repr */12 0, /* tp_as_number */13 0, /* tp_as_sequence */14 0, /* tp_as_mapping */15 (hashfunc)_Py_HashPointer, /* tp_hash */16 (ternaryfunc)type_call, /* tp_call */17 0, /* tp_str */18 (getattrofunc)type_getattro, /* tp_getattro */19 (setattrofunc)type_setattro, /* tp_setattro */20 0, /* tp_as_buffer */21 ...22 }

从PyType_Type定义来看,ob_type被初始化为它自己的地址,所以PyType_Type的类型就是自己。从python源码实现来看,所有PyTypeObject的ob_type都会指向PyType_Type对象,所以PyType_Type是所有类型的类型,称之为元类。python中定义了很多内建的类型对象,如PyInt_Type (int类型),PyStr_Type (str类型),PyDict_Type(dict类型) 类型对象,下面看下PyInt_Type类型的定义:

1 PyTypeObject PyInt_Type = { 2 PyVarObject_HEAD_INIT(&PyType_Type, 0) 3 "int", 4 sizeof(PyIntObject), 5 0, 6 (destructor)int_dealloc, /* tp_dealloc */ 7 (printfunc)int_print, /* tp_print */ 8 0, /* tp_getattr */ 9 0, /* tp_setattr */10 (cmpfunc)int_compare, /* tp_compare */11 (reprfunc)int_to_decimal_string, /* tp_repr */12 &int_as_number, /* tp_as_number */13 0, /* tp_as_sequence */14 0, /* tp_as_mapping */15 (hashfunc)int_hash, /* tp_hash */16 0, /* tp_call */17 ...18 };

从PyInt_Type定义来看,它主要包含了int数据类型相关的方法。PyInt_Type类型对象的初始化和PyType_Type类型类似,PyInt_Type类型的定义也是通过全局静态变量的方式实现的,除了PyInt_Type了下,所有python内建类型都是以这种方式定义的。这些类型产生的对象都会共享这些类型对象,包括这些类型定义的方法。

在python中,怎样查看对象的类型呢?有两种方法,一种是直接type:

1 >>> x = 12 >>> type(x)3 <type 'int'>

另一种是通过对象的__class__属性:

1 >>> x = 12 >>> type(x)3 <type 'int'>4 >>> x.__class__5 <type 'int'>

现在来看看int,str,dict这些类型的类型:1 <type 'int'>2 >>> type(int)3 <type 'type'>4 >>> type(str)5 <type 'type'>6 >>> type(dict)7 <type 'type'>8 >>> type(type)9 <type 'type'>从这个输出来看,int,str,dict这些类型的类型都是type,这也印证了前面说的,所有类型都是通过元类type生成的。

⑶ python实现资产配置(1)----Markowitz 投资组合模型

现假设有A, B, C, D, E五只股票的收益率数据((第二日收盘价-第一日收盘价)/第一日收盘价)), 如果投资人的目标是达到20%的年收益率,那么该如何进行资产配置,才能使得投资的风险最低?

更一般的问题,假设现有x 1 ,x 2 ,...,x n , n支风险资产,且收益率已知,如果投资人的预期收益为goalRet,那么该如何进行资产配置,才能使得投资的风险最低?

1952年,芝加哥大学的Markowitz提出现代资产组合理论(Modern Portfolio Theory,简称MPT),为现代西方证券投资理论奠定了基础。其基本思想是,证券投资的风险在于证券投资收益的不确定性。如果将收益率视为一个数学上的随机变量的话,证券的期望收益是该随机变量的数学期望(均值),而风险可以用该随机变量的方差来表示。

对于投资组合而言,如何分配各种证券上的投资比例,从而使风险最小而收益最大?

答案是将投资比例设定为变量,通过数学规划,对每一固定收益率求最小方差,对每一个固定的方差求最大收益率,这个多元方程的解可以决定一条曲线,这条曲线上的每一个点都对应着最优投资组合,即在给定风险水平下,收益率最大,这条曲线称作“有效前沿” (Efficient Frontier)。

对投资者而言,不存在比有效前沿更优的投资组合,只需要根据自己的风险偏好在有效前沿上寻找最优策略。
简化后的公式为:

其中 p 为投资人的投资目标,即投资人期待的投资组合的期望值. 目标函数说明投资人资产分配的原则是在达成投资目标 p 的前提下,要将资产组合的风险最小化,这个公式就是Markowitz在1952年发表的'Portfolio Selection'一文的精髓,该文奠定了现代投资组合理论的基础,也为Markowitz赢得了1990年的诺贝尔经济学奖. 公式(1)中的决策变量为w i , i = 1,...,N, 整个数学形式是二次规划(Quadratic Programming)问题,在允许卖空的情况下(即w i 可以为负,只有等式约束)时,可以用拉格朗日(Lagrange)方法求解。

有效前缘曲线如下图:

我们考虑如下的二次规划问题

运用拉格朗日方法求解,可以得到

再看公式(1),则将目标函数由 min W T W 调整为 min 1/2(W T W), 两问题等价,写出的求解矩阵为:

工具包: CVXOPT python凸优化包
函数原型: CVXOPT.solvers.qp(P,q,G,h,A,b)

求解时,将对应的P,q,G,h,A,b写出,带入求解函数即可.值得注意的是输入的矩阵必须使用CVXOPT 中的matrix函数转化,输出的结果要使用 print(CVXOPT.solvers.qp(P,q,G,h,A,b)['x']) 函数才能输出。

这里选取五支股票2014-01-01到2015-01-01的收益率数据进行分析.
选取的五支股票分别为: 白云机场, 华夏银行, 浙能电力, 福建高速, 生益科技

先大体了解一下五支股票的收益率情况:

看来,20%的预期收益是达不到了。

接下来,我们来看五支股票的相关系数矩阵:

可以看出,白云机场和福建高速的相关性较高,因为二者同属于交通版块。在资产配置时,不利于降低非系统性风险。

接下来编写一个MeanVariance类,对于传入的收益率数据,可以进行给定预期收益的最佳持仓配比求解以及有效前缘曲线的绘制。

绘制的有效前缘曲线为:

将数据分为训练集和测试集,并将随机模拟的资产配比求得的累计收益与测试集的数据进行对比,得到:

可以看出,在前半段大部分时间用Markowitz模型计算出的收益率要高于随机模拟的组合,然而在后半段却不如随机模拟的数据,可能是训练的数据不够或者没有动态调仓造成的,在后面写策略的时候,我会加入动态调仓的部分。

股票分析部分:

Markowitz 投资组合模型求解

蔡立专:量化投资——以python为工具. 电子工业出版社

⑷ 第1章 为什么将Python用于金融

Python在金融中的应用
在过去的十年里,随着自动化技术的出现,科技最终成为杰出的金融机构,银行,保险和投资公司,股票交易公司,对冲基金,券商等公司的一部分。根据2013年的Crosman 报告,与2013年相比,银行和金融公司2014年在科技上的花费要高出4.2%。预计在2020年,一年的金融服务的技术成本将达到5亿美元。正值系统需要维护和不断升级的时候,一些着名的银行雇佣一些开发者是很正常的事情。那么Python用在哪里呢?
Python的语法很容易实现那些金融算法和数学计算,每个数学语句都能转变成一行Python代码,每行允许超过十万的计算量。
没有其他语言能像Python这样适用于数学,Python精通于计算,以及数学和科学中的排列组合问题。Python的第二个特性是表示数字,序列和算法。比如SciPy库,很适合用来做技术领域和科学领域的计算,SicPy库被很多工程师,科学家和分析人员使用。NumPy,也是Python的一个扩展,它可以很好地处理数学函数,数组和矩阵。同时,Python也支持严格的编码模式,因此,使它成为一个平衡的选择,或者说方法。
使用更少的人达到相同的结果以及实现其他编程语言不能实现的事,是Python首要的优点。Python语法的精确和简洁,以及它大量宝贵的第三方工具使它成为处理金融行业的错综复杂的事务的唯一可靠的选择。
Cititec(英格兰伦敦的职业介绍所)的技术招聘经理Stephen Grant说:跨市场风险管理和交易系统都在使用Python(有时会混合使用c++),很多银行从建立银行的前端到资产风险系统都会选择使用Python。使用Python的金融公司包括荷兰银行,德国证券交易所集团,Bellco信用社,摩根大通以及阿尔蒂斯投资管理。

阅读全文

与python保险模型相关的资料

热点内容
我的世界网易如何在服务器里面加光影 浏览:284
nat地址访问外网服务器 浏览:966
怎样用java编译一个心形 浏览:934
如何使用python中的pygame 浏览:836
python实用小工具 浏览:24
怎么在安卓手机上去除马赛克 浏览:235
农行浓情通app怎么下载 浏览:533
怎么把原文件夹找回来 浏览:535
俄罗斯方块实现python思路 浏览:735
汉语拼音英语编译代码 浏览:501
程序员应具备的能力 浏览:606
手机石墨文档文件夹访问权限 浏览:656
客户端如何登陆域文件服务器 浏览:530
两位数的平方计算法 浏览:930
android图片分块 浏览:715
图形平移命令 浏览:962
聚类算法JAVA代码 浏览:407
网站图标素材压缩包 浏览:892
娱乐化app怎么做 浏览:639
加密货币行业前景如何 浏览:575