导航:首页 > 编程语言 > python地理数据

python地理数据

发布时间:2023-11-29 14:11:43

❶ 学python可以从事哪些工作

第一:Python web开发

学完Python可以做web开发,因为现在中国学习Python的比较少,而招聘Python的却非常的多,国内的豆瓣、果壳网等,国外的Google、Dropbox等都在使用Python做web开发。所以Python web是一个非常不错的选择方向。

第二:运维

目前很多运维人还没有学习Python,但是Python给运维带来的价值非常的大,在运维的工作中,有大量重复性工作的地方,并需要做管理系统、监控系统、发布系统等,将工作自动化起来,提高工作效率,这样的场景Python是一门非常合适的语言。如果用Python来做运维将会事半功倍。

第三:数据分析

现在无论是哪个行业的,做数据分析的人似乎都离不开Python,因为Python给他们带来的工作效率是非常的大。在生物信息学、物理、建筑、地理信息系统、图像可视化分析、生命科学等领域都会运用Python进行科学和数字计算。

第四:自动化测试

一切关于自动化的东西,似乎Python都可以满足,Python可以满足大多数自动化工作,提升工作效率。

第五:3D游戏开发

Python有很好的3D渲染库和游戏开发框架,有很多使用Python开发的游戏,如迪斯尼卡通城、黑暗之刃。常用PyGame、Pykyra等和一个PyWeek的比赛。

第六:网络编程

除了网络和互联网的支持,Python还提供了对底层网络的支持,有易于使用的Socket接口和一个异步的网络编程框架Twisted Python。

第七:人工智能

下个时代就是人工智能时代,很多人都在关注,而在人工智能时代最主流的开发语言就是Python,这是一个潜力最大的选择方向,所以学习Python不会错。

可以说Python在IT领域运用相当广泛,学完后可以从事很多方面的工作。所以,赶快来学Python吧!

❷ 强烈推荐一款Python可视化神器!强烈必备!

Plotly Express 是一个新的高级 Python 可视化库:它是 Plotly.py 的高级封装,它为复杂的图表提供了一个简单的语法。

受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线。 它带有数据集、颜色面板和主题,就像 Plotly.py 一样。

Plotly Express 完全免费:凭借其宽松的开源 MIT 许可证,您可以随意使用它(是的,甚至在商业产品中!)。

最重要的是,Plotly Express 与 Plotly 生态系统的其他部分完全兼容:在您的 Dash 应用程序中使用它,使用 Orca 将您的数据导出为几乎任何文件格式,或使用JupyterLab 图表编辑器在 GUI 中编辑它们!

用 pip install plotly_express 命令可以安装 Plotly Express。

一旦导入Plotly Express(通常是 px ),大多数绘图只需要一个函数调用,接受一个整洁的Pandas dataframe,并简单描述你想要制作的图。 如果你想要一个基本的散点图,它只是 px.scatter(data,x =“column_name”,y =“column_name”)。

以下是内置的 Gapminder 数据集的示例,显示2007年按国家/地区的人均预期寿命和人均GDP 之间的趋势:

如果你想通过大陆区分它们,你可以使用 color 参数为你的点着色,由 px 负责设置默认颜色,设置图例等:

这里的每一点都是一个国家,所以也许我们想要按国家人口来衡量这些点...... 没问题:这里也有一个参数来设置,它被称为 size:

如果你好奇哪个国家对应哪个点? 可以添加一个 hover_name ,您可以轻松识别任何一点:只需将鼠标放在您感兴趣的点上即可! 事实上,即使没有 hover_name ,整个图表也是互动的:

也可以通过 facet_col =”continent“ 来轻松划分各大洲,就像着色点一样容易,并且让我们使用 x轴 对数(log_x)以便在我们在图表中看的更清晰:

也许你不仅仅对 2007年 感兴趣,而且你想看看这张图表是如何随着时间的推移而演变的。 可以通过设置 animation_frame=“year” (以及 animation_group =“country” 来标识哪些圆与控制条中的年份匹配)来设置动画。

在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。 我们可以提供更漂亮的“标签” (labels),可以在整个图表、图例、标题轴和悬停(hovers)中应用。 我们还可以手动设置边界,以便动画在整个过程中看起来更棒:

因为这是地理数据,我们也可以将其表示为动画地图,因此这清楚地表明 Plotly Express 不仅仅可以绘制散点图(不过这个数据集缺少前苏联的数据)。

事实上,Plotly Express 支持三维散点图、三维线形图、极坐标和地图上三元坐标以及二维坐标。 条形图(Bar)有二维笛卡尔和极坐标风格。

进行可视化时,您可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。 大多数二维笛卡尔图接受连续或分类数据,并自动处理日期/时间数据。 可以查看我们的图库 (ref-3) 来了解每个图表的例子。

数据 探索 的主要部分是理解数据集中值的分布,以及这些分布如何相互关联。 Plotly Express 有许多功能来处理这些任务。

使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布:

直方图:

箱形图:

小提琴图:

还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。 Plotly Express 甚至可以帮助你在悬停框中添加线条公式和R²值! 它使用 statsmodels 进行普通最小二乘(OLS)回归或局部加权散点图平滑(LOWESS)。

在上面的一些图中你会注意到一些不错的色标。 在 Plotly Express 中, px.colors 模块包含许多有用的色标和序列:定性的、序列型的、离散的、循环的以及所有您喜欢的开源包:ColorBrewer、cmocean 和 Carto 。 我们还提供了一些功能来制作可浏览的样本供您欣赏(ref-3):

定性的颜色序列:

众多内置顺序色标中的一部分:

我们特别为我们的交互式多维图表感到自豪,例如散点图矩阵(SPLOMS)、平行坐标和我们称之为并行类别的并行集。 通过这些,您可以在单个图中可视化整个数据集以进行数据 探索 。 在你的Jupyter 笔记本中查看这些单行及其启用的交互:

散点图矩阵(SPLOM)允许您可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。 数据集中的每一行都显示为每个图中的一个点。 你可以进行缩放、平移或选择操作,你会发现所有图都链接在一起!

平行坐标允许您同时显示3个以上的连续变量。 dataframe 中的每一行都是一行。 您可以拖动尺寸以重新排序它们并选择值范围之间的交叉点。

并行类别是并行坐标的分类模拟:使用它们可视化数据集中多组类别之间的关系。

Plotly Express 之于 Plotly.py 类似 Seaborn 之于 matplotlib:Plotly Express 是一个高级封装库,允许您快速创建图表,然后使用底层 API 和生态系统的强大功能进行修改。 对于Plotly 生态系统,这意味着一旦您使用 Plotly Express 创建了一个图形,您就可以使用Themes,使用 FigureWidgets 进行命令性编辑,使用 Orca 将其导出为几乎任何文件格式,或者在我们的 GUI JupyterLab 图表编辑器中编辑它 。

主题(Themes)允许您控制图形范围的设置,如边距、字体、背景颜色、刻度定位等。 您可以使用模板参数应用任何命名的主题或主题对象:

有三个内置的 Plotly 主题可以使用, 分别是 plotly, plotlywhite 和 plotlydark。

px 输出继承自 Plotly.py 的 Figure 类 ExpressFigure 的对象,这意味着你可以使用任何 Figure 的访问器和方法来改变 px生成的绘图。 例如,您可以将 .update() 调用链接到 px 调用以更改图例设置并添加注释。 .update() 现在返回修改后的数字,所以你仍然可以在一个很长的 Python 语句中执行此操作:

在这里,在使用 Plotly Express 生成原始图形之后,我们使用 Plotly.py 的 API 来更改一些图例设置并添加注释。

Dash 是 Plotly 的开源框架,用于构建具有 Plotly.py 图表的分析应用程序和仪表板。Plotly Express 产生的对象与 Dash 100%兼容,只需将它们直接传递到 dash_core_components.Graph,如下所示: dcc.Graph(figure = px.scatter(...))。 这是一个非常简单的 50行 Dash 应用程序的示例,它使用 px 生成其中的图表:

这个 50 行的 Dash 应用程序使用 Plotly Express 生成用于浏览数据集的 UI 。

可视化数据有很多原因:有时您想要提供一些想法或结果,并且您希望对图表的每个方面施加很多控制,有时您希望快速查看两个变量之间的关系。 这是交互与 探索 的范畴。

Plotly.py 已经发展成为一个非常强大的可视化交互工具:它可以让你控制图形的几乎每个方面,从图例的位置到刻度的长度。 不幸的是,这种控制的代价是冗长的:有时可能需要多行 Python 代码才能用 Plotly.py 生成图表。

我们使用 Plotly Express 的主要目标是使 Plotly.py 更容易用于 探索 和快速迭代。

我们想要构建一个库,它做出了不同的权衡:在可视化过程的早期牺牲一些控制措施来换取一个不那么详细的 API,允许你在一行 Python 代码中制作各种各样的图表。 然而,正如我们上面所示,该控件并没有消失:你仍然可以使用底层的 Plotly.py 的 API 来调整和优化用 Plotly Express 制作的图表。

支持这种简洁 API 的主要设计决策之一是所有 Plotly Express 的函数都接受“整洁”的 dataframe 作为输入。 每个 Plotly Express 函数都体现了dataframe 中行与单个或分组标记的清晰映射,并具有图形启发的语法签名,可让您直接映射这些标记的变量,如 x 或 y 位置、颜色、大小、 facet-column 甚至是 动画帧到数据框(dataframe)中的列。 当您键入 px.scatter(data,x ='col1',y='col2') 时,Plotly Express 会为数据框中的每一行创建一个小符号标记 - 这就是 px.scatter 的作用 - 并将 “col1” 映射到 x 位置(类似于 y 位置)。 这种方法的强大之处在于它以相同的方式处理所有可视化变量:您可以将数据框列映射到颜色,然后通过更改参数来改变您的想法并将其映射到大小或进行行分面(facet-row)。

接受整个整洁的 dataframe 的列名作为输入(而不是原始的 numpy 向量)也允许 px 为你节省大量的时间,因为它知道列的名称,它可以生成所有的 Plotly.py 配置用于标记图例、轴、悬停框、构面甚至动画帧。 但是,如上所述,如果你的 dataframe 的列被笨拙地命名,你可以告诉 px 用每个函数的 labels 参数替换更好的。

仅接受整洁输入所带来的最终优势是它更直接地支持快速迭代:您整理一次数据集,从那里可以使用 px 创建数十种不同类型的图表,包括在 SPLOM 中可视化多个维度 、使用平行坐标、在地图上绘制,在二维、三维极坐标或三维坐标中使用等,所有这些都不需要重塑您的数据!

在 API 级别,我们在 px 中投入了大量的工作,以确保所有参数都被命名,以便在键入时最大限度地发现:所有 scatter -类似的函数都以 scatter 开头(例如 scatter_polar, scatter_ternary)所以你可以通过自动补全来发现它们。 我们选择拆分这些不同的散点图函数,因此每个散点图函数都会接受一组定制的关键字参数,特别是它们的坐标系。 也就是说,共享坐标系的函数集(例如 scatter, line & bar,或 scatter_polar, line_polar 和 bar_polar )也有相同的参数,以最大限度地方便学习。 我们还花了很多精力来提出简短而富有表现力的名称,这些名称很好地映射到底层的 Plotly.py 属性,以便于在工作流程中稍后调整到交互的图表中。

最后,Plotly Express 作为一个新的 Python 可视化库,在 Plotly 生态系统下,将会迅速发展。所以不要犹豫,立即开始使用 Plotly Express 吧!

❸ python能做什么

python的用途:

Python的优势有必要作为第一步去了解,Python作为面向对象的脚本语言,优势就是数据处理和挖掘,这也注定了它和AI、互联网技术的紧密联系。

网络爬虫。顾名思义,从互联网上爬取信息的脚本,主要由urllib、requests等库编写,实用性很强,小编就曾写过爬取5w数据量的爬虫。在大数据风靡的时代,爬虫绝对是新秀。

人工智能。AI使Python一战成名,AI的实现可以通过tensorflow库。神经网络的核心在于激活函数、损失函数和数据,数据可以通过爬虫获得。训练时大量的数据运算又是Python的show time。

(3)python地理数据扩展阅读:

Python开发人员尽量避开不成熟或者不重要的优化。一些针对非重要部位的加快运行速度的补丁通常不会被合并到Python内。在某些对运行速度要求很高的情况,Python设计师倾向于使用JIT技术,或者用使用C/C++语言改写这部分程序。可用的JIT技术是PyPy。

Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。

Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。

❹ python能用于做什么

Python 的实际应用场景有哪些?这里给大家简单做一个介绍:

Web 应用开发

在因大数据、人工智能为人所熟知之前,Python 就已经在 Web 开发领域被广泛使用,产生了 Django、Flask、Tornado 等 Web 开发框架。得益于其简洁的语法和动态语言特性,Python 的开发效率很高,因而深受创业团队的青睐。

一些将 Python 作为主要开发语言的知名互联网企业/产品:

豆瓣

知乎

果壳网

Instagram

Quora

Dropbox

Reddit

由于后台服务器的通用性,除了狭义的网站之外,很多 App 和游戏的服务器端也同样用 Python 实现。

自动化运维

在 Web 开发领域,Python 只是众多语言选择之一;但在自动化运维领域,Python 则是必备技能。灵活的功能和丰富的类库使其成为运维工程师的首选语言。大量自动化运维工具和平台或以 Python 开发,或提供 Python 的配置接口。单从 Linux 内置 Python 这一点来看也足见其在服务器和运维领域的地位。

因此很多公司虽然核心业务不是使用 Python,但在管理系统、运维等方面也大量使用。比如 Facebook 工程师维护了上千个 Python 项目,包括基础设施管理、广告 API 等。

推荐学习《python教程》

网络爬虫

也叫网络蜘蛛,是指从互联网采集数据的程序脚本。对于很多数据相关公司来说,爬虫和反爬虫技术都是其赖以生存的重要保障。尽管很多语言都可以编写爬虫,但灵活的 Python 无疑也是当前的首选。基于 Python 的爬虫框架 Scrapy 也很受欢迎。

这个星球上最大的“爬虫”公司 -- Google 一直力推 Python,不仅在公司内部大量使用 Python,也为开发社区做了巨大贡献。就连 Python 之父 Guido van Rossum 也曾在 Google 工作七年。

数据分析

当通过爬虫获取了海量数据之后,需要对数据进行清洗、去重、存储、展示、分析,在这方面 Python 有许多优秀的类库:NumPy、Pandas、Matplotlib 可以让你的数据分析工作事半功倍。

科学计算

虽然 Matlab 在科学计算领域有着不可取代的地位,但 Python 作为一门通用的编程语言,可以带来更广泛的应用和更丰富的类库。NumPy、SciPy、BioPython、SunPy 等类库在生物信息、地理信息、数学、物理、化学、建筑等领域发挥着重要作用。

而大名鼎鼎的 NASA 也早已把 Python 作为主要开发语言。

人工智能

Python 在人工智能大范畴领域内的数据挖掘、机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。

机器学习:Scikit-learn

自然语言处理:NLTK

深度学习:Keras、Google 的 TensorFlow、Facebook 的 PyTorch、Amazon 的 MxNet

这些已经占据业内主流的工具要么是用 Python 开发,要么也提供了 Python 版本。Python 无疑已成为 AI 领域的必修语言。

胶水语言

Python 简洁、灵活、通用,几乎可以在各种场景与各种平台、设备、语言进行连接,因此被称为胶水语言。有人把它比作小巧而又多功能的瑞士军刀。除了上面提到的,在其他领域也常常见到 Python 的身影:

金融:大量金融分析和量化交易工具使用 Python 作为的开发脚本语言

游戏:一些引擎使用 Python 作为开发脚本,比较有名的游戏有《文明》系列、网易的《阴阳师》

桌面应用:虽然不算主流,但 PyQT、wxPython、Tkinter 等 GUI 库也足以应付一般的桌面程序

阅读全文

与python地理数据相关的资料

热点内容
怎么下载app里的讲义 浏览:156
命令重启服务器 浏览:208
android电视root权限获取 浏览:247
解放战争pdf王树增 浏览:685
python压测app接口 浏览:953
抖音app怎么推荐 浏览:100
歌库服务器能做其他什么用途 浏览:95
安卓44虚拟机怎么root 浏览:38
程序员瘦身c盘空间 浏览:243
dell服务器温度怎么看 浏览:303
游戏服务器地址是什么 浏览:69
C语言经过编译之后的程序是 浏览:160
编程设计一个简易计算机界面 浏览:516
游戏压缩包损坏 浏览:485
压缩包图标下载 浏览:229
日本解压喜剧 浏览:38
芜湖程序员兼职如何接 浏览:368
句译app怎么用 浏览:342
vs2010编译c怎么用 浏览:104
摩拜单车没app怎么退款 浏览:469