排序是计算机程序设计中的一种重要操作,它的功能是将一个数据元素的任意序列,重新排列成一个关键字有序的序列。那么python列表排序算法有哪些?本文主要为大家讲述python中经常用的三种排序算法:冒泡排序、插入排序和选择排序。
1、冒泡排序
冒泡排序,Bubble
Sort,是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢浮到数列的顶端。
2、插入排序
插入排序,Insertion
Sort,是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前的扫描过程中,需要把已排序元素逐步向后挪位,为最新元素提供插入空间。
3、选择排序
选择排序,Selection
Sort,是一种简单直观的排序算法。它的工作原理如下:首先在未排序序列中找到最小、最大元素,存放到排序序列的起始位置,然后再从剩余未排序元素中继续寻找最小、最大元素。放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
B. Python对数据进行排序-中英文
sort_values(by,axis=0,ascending=True,inplace=False,kind='quicksort',na_position='last')
参数说明:
by: 可以填入字符串或者字符串组成的列表。也就是说, 如果axis=0,那么by="列名";如果axis=1,那么by="行名"。
axis: {0 or ‘index’, 1 or ‘columns’}, default 0,意思就是如果 axis=0,就按照索引排序,即纵向排序;如果axis=1,则按列排序,即横向排序。默认是axis=0 。
ascending: 输入布尔型, True是升序 , False是降序 ,也可以可以是[True,False],即第一个字段升序,第二个字段降序 。
inplace : 输入布尔型,是否用排序后的数据框替换现有的数据框
kind: 排序的方法,{‘quicksort’, ‘mergesort’, ‘heapsort’},默认是使用‘quicksort’。这个参数用的比较少,大家可以试一试。
na_position : {‘first’, ‘last’}, 缺失值的排序 ,也就说决定将缺失值放在数据的最前面还是最后面 。first是排在前面,last是排在后面,默认是用last 。
例子:
scores= pd.DataFrame([[87,56,85],[46,87,97],[34,65,86]],columns=['jack', 'rose', 'mike'])
scores
1.对‘rose’这一列进行降序排序:
df_sc=scores.sort_values(by='rose',ascending=False)
df_sc
2.对第0行进行升序排序:
scores.sort_values(by=0,axis=1,ascending=True)
3.第1行进行升序,第0行进行降序:
scores.sort_values(by=[1,0],axis=1,ascending=[True,False]
4.观察数据
data.head:
查看数据的前五行。
data.tail:
查看数据的后五行。
data.shape :
查看矩阵或数组的维数,或者是说数据表的结构(有几行几列)。
data.info :
查看数据的基本信息,如:数据类型、缺失值数量等。
#brand目标:中文-中英-英文
2.1 包含中文,纯英文
for i in range(0,len(file1)):
result = re.compile(u'[\u4e00-\u9fa5]')
contents = file1['brand'][i]
match = result.search(contents)
if match:
file1.loc[i,['index1']]=0 #0为包含中文
else:
file1.loc[i,['index1']]=1 #1为纯英文
2.1 包含英文,纯中文
for i in range(0,len(file1)):
file1.loc[i,['index2']]=len(re.findall('[a-zA-Z]+', file1['brand'][i]) ) #0为纯中文,1为包含英文