导航:首页 > 编程语言 > python豆瓣滑块验证

python豆瓣滑块验证

发布时间:2023-12-05 12:30:11

⑴ 豆瓣为什么用python

1.不同编程语言的运行效率虽然有不同,但是没有你想象的那么大的差异。
2.大型架构要想提高运行效率,关键在于提高伸缩性和吞吐量,而不是考虑单一程序的效率。高级的...
3.人家只是在应用层用某种语言,在大型架构中,这只是占到程序的一部分,特别是瓶颈不在这里。
4.Python也有高性能优化的方案,比如二次编译,JIT和runtime的优化

⑵ 学python可以做什么

1WEB开发

在国内,豆瓣一开始就使用Python作为web开发基础语言,知乎的整个架构也是基于Python语言,这使得web开发这块在国内发展的很不错。

尽管目前Python并不是做Web开发的首选,但一直都占有不可忽视的一席。Python中有各类Web框架,无论是简单而可以自由搭配的微框架还是全功能的大型MVC框架都一应俱全,这在需要敏捷开发的Web项目中也是十分具有优势的。广泛使用(或曾经广泛使用)Python提供的大型Web服务包括知乎、豆瓣、Dropbox等网站。加之Python本身的“胶水”特性,很容易实现在需要大规模性能级计算时整合其它语言,同时保留Web开发时的轻便快捷。

除此之外,Python中还有大量“开箱即用”的模块,用于与各种其它网站的对接等相关功能。如果希望开发个微信公众号相关功能,wechat-sdk/weixin-python等包,能够使你几乎完全不用管文档中提及的各种服务器交互细节,专注于功能实现即能完成开发。

目前,国内的Python web开发主要有两个技术栈:

(1)Django

Django是一个高级的敏捷web开发框架,如果学会了,撸一个网站很快。当然如果纯粹比撸网站的速度,基于ruby的Ruby on rails显然更快,但是Django有一个优势就是性能优秀,更适合国内网站的应用场景。国外的着名图片社区Pinterest早期也是基于Django开发的,承受了用户快速增长的冲击。所以说如果你想快速开发一个网站,还能兼顾APP客户端的API调用需求,Django是可以信赖的。

(2)Flask

相对于Django,Flask则是一个轻量级的web框架,Flask的最大的优势是性能优越,适合配合手机客户端开发后台API服务。国内基于Flask的Restful API服务这快很火,也是需求最大的。知名的比如网络、网易、小米、陌陌等等很多公司都有基于Flask的应用部署。当然,如果你想做一个传统的web网站,还是建议使用Django,Flask的优势是后端、API,不适合构建全功能网站。

2网络爬虫

网络爬虫是Python比较常用的一个场景,国际上,google在早期大量地使用Python语言作为网络爬虫的基础,带动了整个Python语言的应用发展。以前国内很多人用采集器搜刮网上的内容,现在用Python收集网上的信息比以前容易很多了。

Python在这个方面有许多工具上的积累,无论是用于模拟HTTP请求的Requests、用于HTML DOM解析的PyQuery/BeautifulSoup、用于自动化分布式爬取任务的Scrapy,还是用于最简化数据库访问的各种ORM,都使得Python成为数据爬取的首选语言之一。特别是,爬取后的数据分析与计算是Python最为擅长的领域,非常容易整合。目前Python比较流行的网络爬虫框架是功能非常强大的scrapy。

3人工智能与机器学习

人工智能是现在非常火的一个方向,AI热潮让Python语言的未来充满了无限的潜力。现在释放出来的几个非常有影响力的AI框架,大多是Python的实现,为什么呢?

因为Python足够动态、具有足够性能,这是AI技术所需要的技术特点。比如基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。

6桌面程序

Python也可以用于桌面软件开发(如sublime text等),甚至移动端开发(参看kivy)。Python简洁方便,各种工具包齐全的环境,能大幅度减少开发者的负担。着名的UI框架QT有Python语言的实现版本PyQT。Python简单易用的特性加上QT的优雅,可以很轻松的开发界面复杂的桌面程序,并且能轻松实现跨平台特性。

7多媒体应用

可以用Python里面的PIL、Piddle、ReportLab 等模块对图象、声音、视频、动画等进行处理,还可以用Python生成动态图表和统计分析图表。另外,还可以利用PyOpenGl模块非常快速有效的编写出三维场景。

⑶ Python爬虫实战(1)requests爬取豆瓣电影TOP250

爬取时间:2020/11/25
系统环境:Windows 10
所用工具:Jupyter NotebookPython 3.0
涉及的库:requestslxmlpandasmatplotlib umpy

蛋肥想法: 先将电影名称、原名、评分、评价人数、分类信息从网站上爬取下来。

蛋肥想法: print数据列表后发现电影原名、分类信息等存在不需要的字符,需预先处理;同时因为后续想做一个豆瓣电影TOP250的维度分布图,而同一电影存在多个发行国家、类型(如“法国 美国 / 剧情祥备 动作 犯罪”),为了简(偷)便(懒),这里均取第一个作为记入的数据;最后将数据保存为xlsx。

蛋肥想法: 蛋肥想知道在豆瓣电影TOP250中年份、国家、类型的维度数据,为了练手,使用刚带余才保存成xlsx的数据,并分别画成雷达图、柱形图、扇谨行毁形图。

⑷ python爬虫怎么处理豆瓣网页异常请求

1.URLError

首先解释下URLError可能产生的原因:

⑸ 豆瓣读书数据分析-python

豆瓣读书数据分析-python

(思路来自课程老师绿树)刚刚学完python数据分析的课程,决定做一个有关python数据分析的小项目,思来想去,还是决定分析豆瓣的数据,因为豆瓣是python写成的。用python爬虫抓取数据较为方便,比一般网站少很多页面bug问题,而且豆瓣上的数据量大概在million这个量级,算是算太大的,但也不小。正好手里有一份跑出的大概300多万的数据,直接开始分析。

首先导入数据,将数据赋给一个dataframe,取名为douban

douban=pd.read_table("douban.dat",sep="::",names=["user","book","rate"])

看一下这个数据的描述 

总共3648104行,其他的诸如平均数,中位数的值,是豆瓣书籍的链接后缀,并无实际意义。

然后关于豆瓣读书用户

user_count=douban.groupby('user').count()

user_count=user_count.sort('book',ascending=False)

、我们发现共有38万多读者,计数最多的一位eastwolf东狼,真的很厉害,一共写了4000多的书评。不过我们不排除这是个机器人或者公众号,因为4000度书评,就算一天看一本书,也要写11年,而豆瓣创建才不过11年。有点假,不过这个问题我们暂且不谈,仅从数据来看,第一名最爱读书的书霸,就是eastwolf了,大家鼓掌。

然后我们再来看一下书籍的信息

看一下描述

最受欢迎的书有2071个书评,平均每本书大概有45个书评。

看一下具体情况

我们挑出书评最多的10本,找到图片,就是以下这10本书

可以发现由于不同出版社不同翻译的问题,10本书实际是4本,豆瓣果然是文艺青年聚集地,《小王子》《追风筝的人》《活着》几乎就是文艺青年必备了。 

  豆瓣做为文艺青年聚集地,本身用户属于素质较高的群体。里面分很多小组,读书,电影,音乐,算是给大家找志同道合之友的好地方。关于读书这个方面,在大家都很爱读书的基础上,我们可以用户进行聚类分析。依靠的根据是对书籍的打分,这样来计算不同用户之间的距离。因为读的书目越相似,对同一本书打分结果越接近,说明价值观越相同,找出这样的相似者,就能给用户推荐一下潜在的‘同志’,算是给豆瓣增加一个社交功能了。

  首先我们把用户信息和书本信息结合,因为考虑到大部分书籍用户之间交集为空,而且我的电脑的处理能力有限,所以截取了用户和书籍的前100进行分析,这样得到一个新的dataframe

然后我们建立邻近性矩阵

ubrcore=doubancore.pivot('user','book','rate') 

即使在取前100的条件下,依然大部分是空白,为了能够计算,我们把空白处替换成0.

ubrcore1=ubrcore.fillna(value=0)

然后对要进行距离计算,由于本身对书本的打分在1到5之间,纯粹的大小差距并不大,所以我们更多的考虑在方向上的差异,所以用余弦距离来反应不同用户之间的差异性。

 构建公式,并将计算结果给userdistdf这个dataframe

Userdistdf结果如下

最像用户的就是他自己,余弦距离都是1。其他人只能是部分相像,果然人生得一知己难啊。不过知己找不到,我们可以给用户找10个部分相像的‘同志’

构建函数

试一下

Bingo,成功!!!!

这样,我们可以为用户qdmimi19810920找到了10个志同道合的‘同志’了。

⑹ Python爬虫期末试题(编程题答案)

from seleniumimport webdriver

import time

from selenium.webdriverimport ActionChains

driver = webdriver.Chrome()

driver.get("https://accounts.douban.com/passport/login")

# 点击密码登录山中销

driver.find_element_by_class_name('account-tab-account').click()

# 定位账户 # 输入内容

driver.find_element_by_id('username').send_keys('2331566038')

driver.find_element_by_id('password').send_keys('*********')

# 点击登录

driver.find_element_by_link_text('登录豆瓣').click()

# 进入内嵌滑动验证页面

iframe = driver.find_element_by_id('tcaptcha_iframe')

driver.switch_to_frame(iframe)

element = driver.find_element_by_xpath('//*[@id="tcaptcha_drag_thumb"]')

ActionChains(driver).click_and_hold(on_element=element).perform()

ActionChains(driver).move_to_element_with_offset(to_element=element,xoffset=180,yoffset=0).perform()

driver.save_screenshot('豆逗游瓣.png')

time.sleep(5)

driver.quit()

import urllib.request

import urllib.parse

url ="http://www..com/s"

word = {"wd":"浙江大学培旅"}

word = urllib.parse.urlencode(word)

new_url = url +"?" + word

header = {

"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.114 Safari/537.36"

}

resquest = urllib.request.Request(new_url,headers = header,)

response = urllib.request.urlopen(resquest)

html = response.read().decode('utf-8')

print(html)

阅读全文

与python豆瓣滑块验证相关的资料

热点内容
解放战争pdf王树增 浏览:683
python压测app接口 浏览:951
抖音app怎么推荐 浏览:98
歌库服务器能做其他什么用途 浏览:95
安卓44虚拟机怎么root 浏览:38
程序员瘦身c盘空间 浏览:243
dell服务器温度怎么看 浏览:303
游戏服务器地址是什么 浏览:69
C语言经过编译之后的程序是 浏览:160
编程设计一个简易计算机界面 浏览:516
游戏压缩包损坏 浏览:485
压缩包图标下载 浏览:229
日本解压喜剧 浏览:38
芜湖程序员兼职如何接 浏览:368
句译app怎么用 浏览:342
vs2010编译c怎么用 浏览:104
摩拜单车没app怎么退款 浏览:469
苹果手机下载的app怎么变色了 浏览:903
韵母app怎么写 浏览:603
命令提示符是中文 浏览:167