A. 《python数据挖掘入门与实践》pdf下载在线阅读全文,求百度网盘云资源
《Python数据挖掘入门与实践》([澳] Robert Layton)电子书网盘下载免费在线阅读
链接:
书名:Python数据挖掘入门与实践
作者:[澳] Robert Layton
译者:杜春晓
豆瓣评分:7.9
出版社:人民邮电出版社
出版年份:2016-7
页数:252
内容简介:
本书作为数据挖掘入门读物,介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,带你轻松踏上数据挖掘之旅。本书采用理论与实践相结合的方式,呈现了如何使用决策树和随机森林算法预测美国职业篮球联赛比赛结果,如何使用亲和性分析方法推荐电影,如何使用朴素贝叶斯算法进行社会媒体挖掘,等等。本书也涉及神经网络、深度学习、大数据处理等内容。
作者简介:
计算机科学博士,网络犯罪问题和文本分析方面的专家。多年来一直热衷于Python编程,参与过scikit-learn库等很多开源库的开发,曾担任2014年度“谷歌编程之夏”项目导师。他曾与全球几大数据挖掘公司密切合作,挖掘真实数据并研发相关应用。他的公司dataPipeline为多个行业提供数据挖掘和数据分析解决方案。
B. 《深度学习入门基于Python的理论与实现》pdf下载在线阅读全文,求百度网盘云资源
《深度学习入门基于Python的理论与实现》([ 日] 斋藤康毅)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1m72Z9sY2UemvxbQOVQbkHw
书名:深度学习入门基于Python的理论与实现
豆瓣评分:9.4
作者:[ 日] 斋藤康毅
出版社:人民邮电出版社
出版年:2018-7
页数:285
内容简介
本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等“为什么”的问题。
作者简介
斋藤康毅
东京工业大学毕业,并完成东京大学研究生院课程。现从事计算机视觉与机器学习相关的研究和开发工作。是Introcing Python、Python in Practice、The Elements of Computing Systems、Building Machine
C. 强力推荐!非常全的Python学习资料
一、Python基础教程
《图灵程序设计丛书:Python基础教程(第2版 修订版)》包括Python程序设计的方方面面,首先从Python的安装开始,随后介绍了Python的基础知识和基本概念,包括列表、元组、字符串、字典以及各种语句。然后循序渐进地介绍了一些相对高级的主题,包括抽象、异常、魔法方法、属性、迭代器。此后探讨了如何将Python与数据库、网络、C语言等工具结合使用,从而发挥出Python的强大功能,同时介绍了Python程序测试、打包、发布等知识。结尾,作者结合前面讲述的内容,按照实际项目开发的步骤向读者介绍了几个具有实际意义的Python项目的开发过程。
二、Python编程:从入门到实践
本书是一本针对所有层次的Python读者而作的Python入门书。全书分两部分:首部分介绍用Python 编程所必须了解的基本概念,包括matplotlib、NumPy和Pygal等强大的Python库和工具介绍,以及列表、字典、if语句、类、文件与异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D游戏开发,如何利用数据生成交互式的信息图,以及创建和定制简单的Web应用,并帮读者解决常见编程问题和困惑。
三、利用Python进行数据分析
《利用Python进行数据分析》讲的是利用Python进行数据控制、处理、整理、分析等方面的具体细节和基本要点。同时,它也是利用Python进行科学计算的实用指南(专门针对数据密集型应用).《利用Python进行数据分析》重点介绍了用于高效解决各种数据分析问题的Python语言和库。《利用Python进行数据分析》没有阐述如何利用Python实现具体的分析方法。
四、Python核心编程
《Python核心编程(第3版)》是经典畅销图书《Python核心编程(第二版)》的全新升级版本,总共分为3部分。第1部分为讲解了Python的一些通用应用,包括正则表达式、网络编程、Internet客户端编程、多线程编程、GUI编程、数据库编程、Microsoft Office编程、扩展Python等内容。第2部分讲解了与Web开发相关的主题,包括Web客户端和服务器、CGI和WSGI相关的Web编程、Django Web框架、云计算、高级Web服务。第3部分则为一个补充/实验章节,包括文本处理以及一些其他内容。
《Python核心编程(第3版)》适合具有一定经验的Python开发人员阅读。
五、Python数据分析与挖掘实战
本书共15章,分两个部分:基础篇、实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖掘理论。读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验,以快速理解相关知识与理论。
以上就是关于Python学习资料的相关分享,希望对大家有所帮助,想要了解更多相关内容,欢迎及时关注本平台!
D. python中有哪些简单的算法
首先谢谢邀请,
python中有的算法还是比较多的?
python之所以火是因为人工智能的发展,人工智能的发展离不开算法!
感觉有本书比较适合你,不过可惜的是这本书没有电子版,只有纸质的。
这本书对于算法从基本的入门到实现,循序渐进的介绍,比如里面就涵盖了数学建模的常用算法。
第 1章从数学建模到人工智能
1.1数学建模1.1.1数学建模与人工智能1.1.2数学建模中的常见问题1.2人工智能下的数学1.2.1统计量1.2.2矩阵概念及运算1.2.3概率论与数理统计1.2.4高等数学——导数、微分、不定积分、定积分
第2章 Python快速入门
2.1安装Python2.1.1Python安装步骤2.1.2IDE的选择2.2Python基本操作2.2.1第 一个小程序2.2.2注释与格式化输出2.2.3列表、元组、字典2.2.4条件语句与循环语句2.2.5break、continue、pass2.3Python高级操作2.3.1lambda2.3.2map2.3.3filter
第3章Python科学计算库NumPy
3.1NumPy简介与安装3.1.1NumPy简介3.1.2NumPy安装3.2基本操作3.2.1初识NumPy3.2.2NumPy数组类型3.2.3NumPy创建数组3.2.4索引与切片3.2.5矩阵合并与分割3.2.6矩阵运算与线性代数3.2.7NumPy的广播机制3.2.8NumPy统计函数3.2.9NumPy排序、搜索3.2.10NumPy数据的保存
第4章常用科学计算模块快速入门
4.1Pandas科学计算库4.1.1初识Pandas4.1.2Pandas基本操作4.2Matplotlib可视化图库4.2.1初识Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib绘图案例4.3SciPy科学计算库4.3.1初识SciPy4.3.2SciPy基本操作4.3.3SciPy图像处理案例第5章Python网络爬虫5.1爬虫基础5.1.1初识爬虫5.1.2网络爬虫的算法5.2爬虫入门实战5.2.1调用API5.2.2爬虫实战5.3爬虫进阶—高效率爬虫5.3.1多进程5.3.2多线程5.3.3协程5.3.4小结
第6章Python数据存储
6.1关系型数据库MySQL6.1.1初识MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初识NoSQL6.2.2Python操作MongoDB6.3本章小结6.3.1数据库基本理论6.3.2数据库结合6.3.3结束语
第7章Python数据分析
7.1数据获取7.1.1从键盘获取数据7.1.2文件的读取与写入7.1.3Pandas读写操作7.2数据分析案例7.2.1普查数据统计分析案例7.2.2小结
第8章自然语言处理
8.1Jieba分词基础8.1.1Jieba中文分词8.1.2Jieba分词的3种模式8.1.3标注词性与添加定义词8.2关键词提取8.2.1TF-IDF关键词提取8.2.2TextRank关键词提取8.3word2vec介绍8.3.1word2vec基础原理简介8.3.2word2vec训练模型8.3.3基于gensim的word2vec实战
第9章从回归分析到算法基础
9.1回归分析简介9.1.1“回归”一词的来源9.1.2回归与相关9.1.3回归模型的划分与应用9.2线性回归分析实战9.2.1线性回归的建立与求解9.2.2Python求解回归模型案例9.2.3检验、预测与控制
第10章 从K-Means聚类看算法调参
10.1K-Means基本概述10.1.1K-Means简介10.1.2目标函数10.1.3算法流程10.1.4算法优缺点分析10.2K-Means实战
第11章 从决策树看算法升级
11.1决策树基本简介11.2经典算法介绍11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系数11.2.5小结11.3决策树实战11.3.1决策树回归11.3.2决策树的分类
第12章 从朴素贝叶斯看算法多变193
12.1朴素贝叶斯简介12.1.1认识朴素贝叶斯12.1.2朴素贝叶斯分类的工作过程12.1.3朴素贝叶斯算法的优缺点12.23种朴素贝叶斯实战
第13章 从推荐系统看算法场景
13.1推荐系统简介13.1.1推荐系统的发展13.1.2协同过滤13.2基于文本的推荐13.2.1标签与知识图谱推荐案例13.2.2小结
第14章 从TensorFlow开启深度学习之旅
14.1初识TensorFlow14.1.1什么是TensorFlow14.1.2安装TensorFlow14.1.3TensorFlow基本概念与原理14.2TensorFlow数据结构14.2.1阶14.2.2形状14.2.3数据类型14.3生成数据十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成随机数14.4TensorFlow实战
希望对你有帮助!!!
贵在坚持,自己掌握一些,在工作中不断打磨,高薪不是梦!!
E. Python培训课程内容都有什么
下面是Python全栈开发+人工智能的学习内容:
阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与人工智能之WEB框架开发学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段八:人工智能
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、数据分析 、图像识别、自然语言翻译等。
阶段九:自动化运维&开发
Python全栈开发与人工智能之自动化运维&开发学习内容包括:CMDB资产管理系统开发、IT审计+主机管理系统开发、分布式主机监控系统开发等。
阶段十:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
F. python机器学习方向的第三方库是什么
Python开发工程师必知的十大机器学习库:
一、Scikit-Learn
在机器学习和数据挖掘的应用中,Scikit-Learn是一个功能强大的Python包,我们可以用它进行分类、特征选择、特征提取和聚集。
二、Statsmodels
Statsmodels是另一个聚焦在统计模型上的强大的库,主要用于预测性和探索性分析,拟合线性模型、进行统计分析或者预测性建模,使用Statsmodels是非常合适的。
三、PyMC
PyMC是做贝叶斯曲线的工具,其包含贝叶斯模型、统计分布和模型收敛的诊断工具,也包含一些层次模型。
四、Gensim
Gensim被称为人们的主题建模工具,其焦点是狄利克雷划分及变体,其支持自然语言处理,能将NLP和其他机器学习算法更容易组合在一起,还引用Google的基于递归神经网络的文本表示法word2vec。
五、Orange
Orange是一种带有图形用户界面的库,在分类、聚集和特征选择方法方面,相当齐全,还有交叉验证的方法。
六、PyMVPA
PyMVPA是一种统计学习库,包含交叉验证和诊断工具,但没有Scikit-learn全面。
七、Theano
Theano是最成熟的深度学习库,它提供不错的数据结构表示神经网络的层,对线性代数来说很高效,与Numpy的数组类似,很多基于Theano的库都在利用其数据结构,它还支持开箱可用的GPU编程。
八、PyLearn
PyLearn是一个基于Theano的库,它给Theano引入了模块化和可配置性,可以通过不同的配置文件来创建神经网络。
九、Hebel
Hebel是一个带有GPU支持的神经网络库,可以通过YAML文件决定神经网络的属性,提供了将神级网络和代码友好分离的方式,并快速地运行模型,它是用纯Python编写,是很友好的库,但由于开发不久,就深度和广大而言,还有些匮乏!
十、Neurolab
Neurolab是一个API友好的神经网络库,其包含递归神经网络实现的不同变体,如果使用RNN,这个库是同类API中最好的选择之一。
G. python需要学习什么内容
Python的学习内容还是比较多的,我们将学习的过程划分为4个阶段,每个阶段学习对应的内容,具体的学习顺序如下:
Python学习顺序:
①Python软件开发基础
掌握计算机的构成和工作原理
会使用Linux常用工具
熟练使用Docker的基本命令
建立Python开发环境,并使用print输出
使用Python完成字符串的各种操作
使用Python re模块进行程序设计
使用Python创建文件、访问、删除文件
掌握import 语句、From…import 语句、From…import* 语句、方法的引用、Python中的包
②Python软件开发进阶
能够使用Python面向对象方法开发软件
能够自己建立数据库,表,并进行基本数据库操作
掌握非关系数据库MongoDB的使用,掌握Redis开发
能够独立完成TCP/UDP服务端客户端软件开发,能够实现ftp、http服务器,开发邮件软件
能开发多进程、多线程软件
③Python全栈式WEB工程师
能够独立完成后端软件开发,深入理解Python开发后端的精髓
能够独立完成前端软件开发,并和后端结合,熟练掌握使用Python进行全站Web开发的技巧
④Python多领域开发
能够使用Python熟练编写爬虫软件
能够熟练使用Python库进行数据分析
招聘网站Python招聘职位数据爬取分析
掌握使用Python开源人工智能框架进行人工智能软件开发、语音识别、人脸识别
掌握基本设计模式、常用算法
掌握软件工程、项目管理、项目文档、软件测试调优的基本方法
互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。
想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,中博软件学院、南京课工场、南京北大青鸟等开设python专业的学校都是不错的,建议实地考察对比一下。
祝你学有所成,望采纳。
H. Python要哪些要点要学习
阶段一:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
阶段二:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
阶段三:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
阶段四:WEB框架开发
Python全栈开发与橡御人工智能之WEB框架开发陪如稿学习内容包括:Django框架基础、Django框架进阶、BBS+Blog实战项目开发、缓存和队列中间件、Flask框架学习、Tornado框架学习、Restful API等。
阶段五:爬虫开发
Python全栈开发与人工智能之爬虫开发学习内容包括:爬虫开发实战。
阶段六:全栈项目实战
Python全栈开发与人工智能之全栈项目实战学习内容包括:企业应用工具学习、CRM客户关系管理系统开发、路飞学城在线教育平台开发等。
阶段七芦孝:算法&设计模式
阶段八:数据分析
Python全栈开发与人工智能之数据分析学习内容包括:金融量化分析。
阶段九:机器学习、图像识别、NLP自然语言处理
Python全栈开发与人工智能之人工智能学习内容包括:机器学习、图形识别、人工智能玩具开发等。
阶段十:Linux系统&百万级并发架构解决方案
阶段十一:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
I. python爬取学习通考试题库是真的吗是骗人的吗
学习通是一个手机APP,那么就会通过http协议传输数据,只要通过手机抓包,得到网络请求地址和cookie等验证信息,就可以通过python去模拟请求。
理论上是可以得到题目的网络请求,然后使用python模拟请求获取的。不是骗人的。