‘壹’ 如何用python做爬虫
在我们日常上网浏览网页的时候,经常会看到一些好看的图片,我们就希望把这些图片保存下载,或者用户用来做桌面壁纸,或者用来做设计的素材。
我们最常规的做法就是通过鼠标右键,选择另存为。但有些图片鼠标右键的时候并没有另存为选项,还有办法就通过就是通过截图工具截取下来,但这样就降低图片的清晰度。好吧其实你很厉害的,右键查看页面源代码。
我们可以通过python来实现这样一个简单的爬虫功能,把我们想要的代码爬取到本地。下面就看看如何使用python来实现这样一个功能。
‘贰’ python爬虫必知必会的几个工具包
爬虫是学习python有趣途径,同样有强大的框架
python自带的urllib其实使用起来有点麻烦,推荐你使用requests库,这是一个非常强大,使用方便的库,而且有全面的中文文档,网上爬数据爬图片都不在话下。
还有更高级的库-scrapy库。
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。Scrapy 使用了 Twisted异步网络库来处理网络通讯。爬取网站数据,当然少不了正则模块re,还有beautiful soup模块
re模块具有强大的处理字符串的能力,但是使用起来并不简单,因为当你觉得可以使用正则表达式的时候,这本身就是一个问题,因为写出一个正则表达式就是一个大问题。不过不用怕,在处理网站结构的数据时,有更强大的库-beautiful soup
Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库,拥有完善的中文文档,提供了种类繁多的属性和方法供你选择,让你解析网站数据更加的得心应手!
web后端框架django,flask
python在web开发方面也是多面手,既有大而全的框架django,又有小而精的框架flask。
虽说在web开发方面有许多框架,但是最常用的还是这两种,如果你想做中方面的工作,学好这两个框架就够用了,而且,目前的python后端开发的招聘需求多半是要求会这两个框架。
‘叁’ 如何用python写爬虫来获取网页中所有的文章以及关键词
所谓网页抓取,就是把URL地址中指定的网络资源从网络流中读取出来,保存到本地。
类似于使用程序模拟IE浏览器的功能,把URL作为HTTP请求的内容发送到服务器端, 然后读取服务器端的响应资源。
在Python中,我们使用urllib2这个组件来抓取网页。
urllib2是Python的一个获取URLs(Uniform Resource Locators)的组件。
它以urlopen函数的形式提供了一个非常简单的接口。
最简单的urllib2的应用代码只需要四行。
我们新建一个文件urllib2_test01.py来感受一下urllib2的作用:
import urllib2
response = urllib2.urlopen('http://www..com/')
html = response.read()
print html
按下F5可以看到运行的结果:
我们可以打开网络主页,右击,选择查看源代码(火狐OR谷歌浏览器均可),会发现也是完全一样的内容。
也就是说,上面这四行代码将我们访问网络时浏览器收到的代码们全部打印了出来。
这就是一个最简单的urllib2的例子。
除了"http:",URL同样可以使用"ftp:","file:"等等来替代。
HTTP是基于请求和应答机制的:
客户端提出请求,服务端提供应答。
urllib2用一个Request对象来映射你提出的HTTP请求。
在它最简单的使用形式中你将用你要请求的地址创建一个Request对象,
通过调用urlopen并传入Request对象,将返回一个相关请求response对象,
这个应答对象如同一个文件对象,所以你可以在Response中调用.read()。
我们新建一个文件urllib2_test02.py来感受一下:
import urllib2
req = urllib2.Request('http://www..com')
response = urllib2.urlopen(req)
the_page = response.read()
print the_page
可以看到输出的内容和test01是一样的。
urllib2使用相同的接口处理所有的URL头。例如你可以像下面那样创建一个ftp请求。
req = urllib2.Request('ftp://example.com/')
在HTTP请求时,允许你做额外的两件事。
1.发送data表单数据
这个内容相信做过Web端的都不会陌生,
有时候你希望发送一些数据到URL(通常URL与CGI[通用网关接口]脚本,或其他WEB应用程序挂接)。
在HTTP中,这个经常使用熟知的POST请求发送。
这个通常在你提交一个HTML表单时由你的浏览器来做。
并不是所有的POSTs都来源于表单,你能够使用POST提交任意的数据到你自己的程序。
一般的HTML表单,data需要编码成标准形式。然后做为data参数传到Request对象。
编码工作使用urllib的函数而非urllib2。
我们新建一个文件urllib2_test03.py来感受一下:
import urllib
import urllib2
url = 'http://www.someserver.com/register.cgi'
values = {'name' : 'WHY',
'location' : 'SDU',
'language' : 'Python' }
data = urllib.urlencode(values) # 编码工作
req = urllib2.Request(url, data) # 发送请求同时传data表单
response = urllib2.urlopen(req) #接受反馈的信息
the_page = response.read() #读取反馈的内容
如果没有传送data参数,urllib2使用GET方式的请求。
GET和POST请求的不同之处是POST请求通常有"副作用",
它们会由于某种途径改变系统状态(例如提交成堆垃圾到你的门口)。
Data同样可以通过在Get请求的URL本身上面编码来传送。
import urllib2
import urllib
data = {}
data['name'] = 'WHY'
data['location'] = 'SDU'
data['language'] = 'Python'
url_values = urllib.urlencode(data)
print url_values
name=Somebody+Here&language=Python&location=Northampton
url = 'http://www.example.com/example.cgi'
full_url = url + '?' + url_values
data = urllib2.open(full_url)
这样就实现了Data数据的Get传送。
2.设置Headers到http请求
有一些站点不喜欢被程序(非人为访问)访问,或者发送不同版本的内容到不同的浏览器。
默认的urllib2把自己作为“Python-urllib/x.y”(x和y是Python主版本和次版本号,例如Python-urllib/2.7),
这个身份可能会让站点迷惑,或者干脆不工作。
浏览器确认自己身份是通过User-Agent头,当你创建了一个请求对象,你可以给他一个包含头数据的字典。
下面的例子发送跟上面一样的内容,但把自身模拟成Internet Explorer。
(多谢大家的提醒,现在这个Demo已经不可用了,不过原理还是那样的)。
import urllib
import urllib2
url = 'http://www.someserver.com/cgi-bin/register.cgi'
user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'
values = {'name' : 'WHY',
'location' : 'SDU',
'language' : 'Python' }
headers = { 'User-Agent' : user_agent }
data = urllib.urlencode(values)
req = urllib2.Request(url, data, headers)
response = urllib2.urlopen(req)
the_page = response.read()
以上就是python利用urllib2通过指定的URL抓取网页内容的全部内容,非常简单吧,希望对大家能有所帮助。
‘肆’ python爬虫怎么做
大到各类搜索引擎,小到日常数据采集,都离不开网络爬虫。爬虫的基本原理很简单,遍历网络中网页,抓取感兴趣的数据内容。这篇文章会从零开始介绍如何编写一个网络爬虫抓取数据做告宏,然后会一步步逐渐完善爬虫的抓取功能。
工具安装
我们需要安装python,python的requests和BeautifulSoup库。我们用Requests库用抓取网页的内容,使用BeautifulSoup库来从网页中提取数据。
安装python
运行pipinstallrequests
运行pipinstallBeautifulSoup
抓取网页
完成必要工具安装后,我们正式开始编写我们的爬虫。我们的第一个任务是要抓取所有豆瓣上的图书信息。我们以/subject/26986954/为例,首先看看开如何抓取网页的内容。
使用python的requests提供的get()方法我们可以非常简单的获取的指定网页的内纯册容,代码如下:
提取内容
抓取到网页的内容后,我们要做的就是提取出我们想要的内容。在我们的第一个例子中,我们只需要提取书名。首先我们导入BeautifulSoup库,使用BeautifulSoup我们可以非常简单的提取网页的特定内容。
连续抓取网页
到目前为止,我们已经可以抓取单个网页的内容了,现在让我们看看如何抓取整个网站的内容。我们知道网页之间是通过超链接互相连接在一起的,通过链接我们可以访问整个网络。所以我们可以从每个页面提取出包含指向其它网页的链接,然后重复的对新链接进行抓取。
通过以上几步我们就可以写出一个最原始的爬虫。在理解了爬虫原理的基础上,我们可以进一步对爬虫进行完善。
写过一个系列关于爬虫的文章:/i6567289381185389064/。感兴趣的可以前往查看。
Python基本环境的搭建,爬虫的基本原理以及爬虫的原型
Python爬虫入门(第1部分)
如何使用BeautifulSoup对网页内容进行提取
Python爬虫入门(第2部分)
爬虫运行时数据的存储数据,以SQLite和MySQL作为示例
Python爬虫入门(第3部分)
使用seleniumwebdriver对动态网页进行抓取
Python爬虫入门(第4部分)
讨论了如何处理网站的反爬虫策略
Python爬友如虫入门(第5部分)
对Python的Scrapy爬虫框架做了介绍,并简单的演示了如何在Scrapy下进行开发
Python爬虫入门(第6部分)
‘伍’ 4.python爬虫之新建 scrapy 爬虫项目(抓取和保存)
1.win10 下 win + r 打开cmd 切换新项目的目录
2.新建scrapy项目的命令:
可以利用pycharm 打开项目文件夹编辑项目
3.items.py
声明爬取的字段
4.新建scrapy 爬虫
用命令 scrapy genspider doubanmovie "movie.douban.com" 创建爬虫。
5.运行爬虫
5.1 创建运行脚本
(一)、在 scrapy.cfg 同级目录下创建 pycharm 调试脚本 run.py,避免每次运行爬虫输入密码,内容如下:
6.修改robottxt协议
修改 settings 中的 ROBOTSTXT_OBEY = True 参数为 False,因为默认为 True,就是要遵守 robots.txt 的规则, robots.txt 是遵循 Robot协议 的一个文件,它保存在网站的服务器中,它的作用是,告诉搜索引擎爬虫,本网站哪些目录下的网页不希望你进行爬取收录。在 Scrapy 启动后,会在第一时间访问网站的 robots.txt 文件,然后决定该网站的爬取范围。查看 robots.txt 可以直接网址后接 robots.txt 即可。
一般构建爬虫系统,建议自己编写Item Pipeline,就可以在open(path)选择自己的保存路径
参考: # scrapy爬虫事件以及数据保存为txt,json,mysql
7.1保存为json格式时出现乱码的解决方式:
scrapy抓取豆瓣书籍保存json文件乱码问题
中文默认是Unicode,如:
\u5317\u4eac\u5927\u5b66
在setting文件settings.py中设置:
就可以解决了
第二种解决办法
或在cmd中传入 -s FEED_EXPORT_ENCODING='utf-8'
参考: https://www.cnblogs.com/tinghai8/p/9700300.html
‘陆’ Python 爬虫爬坑路(二)——B站图片,咸鱼的正确 GET 姿势
昨天在写完 入门级爬虫之后 ,马上就迫不及待的着手开始写 B站的图片爬虫了,真的很喜欢这个破站呢 (〜 ̄△ ̄)〜
这里不涉及到 Python 爬虫的高级技巧,没有使用框架,没有考虑反爬机制,没有使用异步IO技术,因为这些,我都不会!
我们选定 B站的 动画区 进行测试,打开后我们发现有好多好多图....
但当我们使用 F12 查看这些图片的时候,发现并没有图片的地址...
这就是目前大多网站使用的 Ajax 技术动态加载数据的锅,可遇到这种情况这么办呢?别急别急,我们知道这些图片的地址一定是需要加载的,而目前常见WEB传输数据的基本就是方式 XML 和 Json (其实是我就知道这两种...),那好我们去看看请求的 XML 和 Json 文件。
以下省略查找过程....
我们发现 B站的图片地址是保存在 Json 里面的,ok,我们保存好这个 json 地址:
https://api.bilibili.com/x/web-interface/dynamic/region?callback=jQuery172071087417824369_1505783866149&jsonp=jsonp&ps=15&rid=24&_=1505783866453
这个是 MAD·AMV 最新动态的 Json 文件,利用上面相同的方法,我们找到 3D区、短片·配音区、综合区 以及 右边排行部分 的相应 json 地址。
好在 Chrome 浏览器提供了一个 Preview 功能,自动帮我们整理好 数据,如下
这样就很清晰啦,我们只需要一层层解析拿到 pic 即可。于是我们这样写:
我们利用 requests 内置的 json 解码器,很不幸,报错:
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)
它提示说:解码 Json 数据的时候出了问题,可能是在 第一行 第一列,咦?好奇怪,刚才不是用浏览器看过结构了吗,没毛病啊,怎么还在报错:Σ(  ̄□ ̄||)
别急别急,我们先看看原始的 Json 数据长啥样?用 浏览器打开上面的 json 链接就可以了。
(/TДT)/ 前面的那些字母是干嘛的呀,为什么还有括号啊!
所以我们知道了 Json 解析错误 的原因啦:后面在处理的时候把前面的这部分删掉就好啦,另外我们也发现了 archives 这个关键字,我们在上一张图看见过的哦,有印象吗?啊,你说没有呀,没关系,这里你只需要记着它是一个 List 的数据类型就好了呀!
为了防止被当作是 恶意访问 从而被封 IP,这里我们选择牺牲时间,取巧使用 sleep(x) ,让其等待一段时间之后再发出请求。
你可能会问我,呀,你这个,根本没有代理、没有混淆IP防止反爬、也没有模拟 Ajax 请求动态抓取云云~
那我可以很负责的告诉你,你!走错地方了!你要找的技术贴出门右拐!( ̄へ ̄)
我们恰巧使用的是 B站的 Ajax 技术,只要哪个视频有了最新评论(或者是一下其它的条件),就会使用 Ajax 将最新的数据取出来。就像下面这样:
所以可能在访问人数多的时候,更新越快,越有可能获得更多不同的图片啦!
之后你就可以在吃饭的时候,把它挂起,然后吃饭回来就会发现有好多好多的图片!(=・ω・=)
之后会陆续的更新自己爬虫的爬坑过程,希望能够找到小伙伴一起学习呀!