‘壹’ python 数据可视化:数据分布统计图和热图
本课将继续介绍 Seaborn 中的统计图。一定要牢记,Seaborn 是对 Matplotlib 的高级封装,它优化了很多古老的做图过程,因此才会看到一个函数解决问题的局面。
在统计学中,研究数据的分布情况,也是一个重要的工作,比如某些数据是否为正态分布——某些机器学习模型很在意数据的分布情况。
在 Matplotlib 中,可以通过绘制直方图将数据的分布情况可视化。在 Seaborn 中,也提供了绘制直方图的函数。
输出结果:
sns.distplot 函数即实现了直方图,还顺带把曲线画出来了——曲线其实代表了 KDE。
除了 sns.distplot 之外,在 Seaborn 中还有另外一个常用的绘制数据分布的函数 sns.kdeplot,它们的使用方法类似。
首先看这样一个示例。
输出结果:
① 的作用是设置所得图示的背景颜色,这样做的目的是让下面的 ② 绘制的图像显示更清晰,如果不设置 ①,在显示的图示中看到的就是白底图像,有的部分看不出来。
② 最终得到的是坐标网格,而且在图中分为三部分,如下图所示。
相对于以往的坐标网格,多出了 B 和 C 两个部分。也就是说,不仅可以在 A 部分绘制某种统计图,在 B 和 C 部分也可以绘制。
继续操作:
输出结果:
语句 ③ 实现了在坐标网格中绘制统计图的效果,jp.plot 方法以两个绘图函数为参数,分别在 A 部分绘制了回归统计图,在 B 和 C 部分绘制了直方图,而且直方图分别表示了对应坐标轴数据的分布,即:
我们把有语句 ② 和 ③ 共同实现的统计图,称为联合统计图。除了用 ② ③ 两句可以绘制这种图之外,还有一个函数也能够“两步并作一步”,具体如下:
输出结果:
‘贰’ 如何高效地使用Python统计数据的频率
之前用 Python 写过一个脚本,用来处理上千万用户的一些数据,其中有一个需求是统计用户的某一数据的去重数量。为了加快程序的速度,我启用了多进程。但不幸的是,程序跑了近一个星期,还没处理完。这时,我感觉到了不对,于是开始查看程序的性能瓶颈。
对于统计去重数,我是将用户的数据放到一个列表中,然后用 len(set(data)) 去统计去重数量。刚开始我以为这的数据量并不大,每个用户的数据不会过百,我并没有注意到有的用户会有上万条的数据,因此消耗了大量的时间(其实我的脚本消耗时间最大的地方是因为从远程 redis 中取大量数据时发生长时间的阻塞,甚至连接超时,最后我采用的方式分而治之,每次取少量的数据,这样大大的提高了性能)。
为了做优化,我开始寻求高效的方法。我发现,有大量的人认为采用字典效率会更高,即:
data_unique = {}.fromkeys(data).keys() len(data_unique)
于是,我做了下测试:
In [1]: import random In [2]: data = [random.randint(0, 1000) for _ in xrange(1000000)] In [3]: %timeit len(set(data)) 10 loops, best of 3: 39.7 ms per loop In [4]: %timeit len({}.fromkeys(data).keys()) 10 loops, best of 3: 43.5 ms per loop
由此可见,采用字典和采用集合的性能是差不多的,甚至可能还要慢些。
在 Python 中其实有很多高效的库,例如用 numpy、pandas 来处理数据,其性能接近于 C 语言。那么,我们就用 numpy 和 pandas 来解决这个问题,这里我还比较了获取去重数据的性能,代码如下:
import collections import random as py_random import timeit import numpy.random as np_random import pandas as pd DATA_SIZE = 10000000 def py_cal_len(): data = [py_random.randint(0, 1000) for _ in xrange(DATA_SIZE)] len(set(data)) def pd_cal_len(): data = np_random.randint(1000, size=DATA_SIZE) data = pd.Series(data) data_unique = data.value_counts() data_unique.size def py_count(): data = [py_random.randint(0, 1000) for _ in xrange(DATA_SIZE)] collections.Counter(data) def pd_count(): data = np_random.randint(1000, size=DATA_SIZE) data = pd.Series(data) data.value_counts() # Script starts from here if __name__ == "__main__": t1 = timeit.Timer("py_cal_len()", setup="from __main__ import py_cal_len") t2 = timeit.Timer("pd_cal_len()", setup="from __main__ import pd_cal_len") t3 = timeit.Timer("py_count()", setup="from __main__ import py_count") t4 = timeit.Timer("pd_count()", setup="from __main__ import pd_count") print t1.timeit(number=1) print t2.timeit(number=1) print t3.timeit(number=1) print t4.timeit(number=1)
运行结果:
12.438587904 0.435907125473 14.6431810856 0.258564949036
利用 pandas 统计数据的去重数和去重数据,其性能是 Python 原生函数的 10 倍以上。
‘叁’ Python 数据可视化:分类特征统计图
上一课已经体验到了 Seaborn 相对 Matplotlib 的优势,本课将要介绍的是 Seaborn 对分类数据的统计,也是它的长项。
针对分类数据的统计图,可以使用 sns.catplot 绘制,其完整参数如下:
本课使用演绎的方式来学习,首先理解这个函数的基本使用方法,重点是常用参数的含义。
其他的参数,根据名称也能基本理解。
下面就依据 kind 参数的不同取值,分门别类地介绍各种不同类型的分类统计图。
读入数据集:
然后用这个数据集制图,看看效果:
输出结果:
毫无疑问,这里绘制的是散点图。但是,该散点图的横坐标是分类特征 time 中的三个值,并且用 hue='kind' 又将分类特征插入到图像中,即用不同颜色的的点代表又一个分类特征 kind 的值,最终得到这些类别组合下每个记录中的 pulse 特征值,并以上述图示表示出来。也可以理解为,x='time', hue='kind' 引入了图中的两个特征维度。
语句 ① 中,就没有特别声明参数 kind 的值,此时是使用默认值 'strip'。
与 ① 等效的还有另外一个对应函数 sns.stripplot。
输出结果:
② 与 ① 的效果一样。
不过,在 sns.catplot 中的两个参数 row、col,在类似 sns.stripplot 这样的专有函数中是没有的。因此,下面的图,只有用 sns.catplot 才能简洁直观。
输出结果:
不过,如果换一个叫角度来说,类似 sns.stripplot 这样的专有函数,表达简单,参数与 sns.catplot 相比,有所精简,使用起来更方便。
仔细比较,sns.catplot 和 sns.stripplot 两者还是稍有区别的,虽然在一般情况下两者是通用的。
因此,不要追求某一个是万能的,各有各的用途,存在即合理。
不过,下面的声明请注意: 如果没有非常的必要,比如绘制分区图,在本课中后续都演示如何使用专有名称的函数。
前面已经初步解释了这个函数,为了格式完整,这里再重复一下,即 sns.catplot 中参数 kind='strip'。
如果非要将此函数翻译为汉语,可以称之为“条状散点图”。以分类特征为一坐标轴,在另外一个坐标轴上,根据分类特征,将该分类特征数据所在记录中的连续值沿坐标轴描点。
从语句 ② 的结果图中可以看到,这些点虽然纵轴的数值有相同的,但是没有将它们重叠。因此,我们看到的好像是“一束”散点,实际上,所有点的横坐标都应该是相应特征分类数据,也不要把分类特征的值理解为一个范围,分散开仅仅是为了图示的视觉需要。
输出结果:
④ 相对 ② 的图示,在于此时同一纵轴值的都重合了——本来它们的横轴值都是一样的。实现此效果的参数是 jitter=0,它可以表示点的“振动”,如果默认或者 jitter=True,意味着允许描点在某个范围振动——语句 ② 的效果;还可设置为某个 0 到 1 的浮点,表示许可振动的幅度。请对比下面的操作。
输出结果:
语句 ② 中使用 hue='kind' 参数向图中提供了另外一个分类特征,但是,如果感觉图有点乱,还可以这样做:
输出结果:
dodge=True 的作用就在于将 hue='kind' 所引入的特征数据分开,相对 ② 的效果有很大差异。
并且,在 ⑤ 中还使用了 paletter='Set2' 设置了色彩方案。
sns.stripplot 函数中的其他有关参数,请读者使用帮助文档了解。
此函数即 sns.catplot 的参数 kind='swarm'。
输出结果:
再绘制一张简单的图,一遍研究这种图示的本质。
输出结果:
此图只使用了一个特征的数据,简化表象,才能探究 sns.swarmplot 的本质。它同样是将该特征中的数据,依据其他特征的连续值在图中描点,并且所有点在默认情况下不彼此重叠——这方面与 sns.stripplot 一样。但是,与之不同的是,这些点不是随机分布的,它们经过调整之后,均匀对称分布在分类特征数值所在直线的两侧,这样能很好地表示数据的分布特点。但是,这种方式不适合“大数据”。
sns.swarmplot 的参数似乎也没有什么太特殊的。下面使用几个,熟悉一番基本操作。
在分类维度上还可以再引入一个维度,用不同颜色的点表示另外一种类别,即使用 hue 参数来实现。
输出结果:
这里用 hue = 'smoker' 参数又引入了一个分类特征,在图中用不同颜色来区分。
如果觉得会 smoker 特征的值都混在一起有点乱,还可以使用下面方式把他们分开——老调重弹。
输出结果:
生成此效果的参数就是 dodge=True,它的作用就是当 hue 参数设置了特征之后,将 hue 的特征数据进行分类。
sns.catplot 函数的参数 kind 可以有三个值,都是用于绘制分类的分布图:
下面依次对这三个专有函数进行阐述。
‘肆’ 如何用python进行数据分析
1、Python数据分析流程及学习路径
数据分析的流程概括起来主要是:读写、处理计算、分析建模和可视化四个部分。在不同的步骤中会用到不同的Python工具。每一步的主题也包含众多内容。
根据每个部分需要用到的工具,Python数据分析的学习路径如下:
相关推荐:《Python入门教程》
2、利用Python读写数据
Python读写数据,主要包括以下内容:
我们以一小段代码来看:
可见,仅需简短的两三行代码即可实现Python读入EXCEL文件。
3、利用Python处理和计算数据
在第一步和第二步,我们主要使用的是Python的工具库NumPy和pandas。其中,NumPy主要用于矢量化的科学计算,pandas主要用于表型数据处理。
4、利用Python分析建模
在分析和建模方面,主要包括Statsmdels和Scikit-learn两个库。
Statsmodels允许用户浏览数据,估计统计模型和执行统计测试。可以为不同类型的数据和每个估算器提供广泛的描述性统计,统计测试,绘图函数和结果统计列表。
Scikit-leran则是着名的机器学习库,可以迅速使用各类机器学习算法。
5、利用Python数据可视化
数据可视化是数据工作中的一项重要内容,它可以辅助分析也可以展示结果。