❶ python如何爬取百度图片
几乎所有的网站都会有反爬机制,这就需要在爬取网页时携带一些特殊参数,比如:user-agent、Cookie等等,可以在写代码的时候用工具将所有参数都带上。
❷ linux下python怎么写爬虫获取图片
跟linux有什么关系,python是跨平台的,爬取图片的代码如下:
import urllib.requestimport osimport randomdef url_open(url):
req=urllib.request.Request(url) #为请求设置user-agent,使得程序看起来更像一个人类
req.add_header('User-Agent','Mozilla/5.0 (Windows NT 6.1; WOW64; rv:43.0) Gecko/20100101 Firefox/43.0') #代理IP,使用户能以不同IP访问,从而防止被服务器发现
'''iplist=['1.193.162.123:8000','1.193.162.91:8000','1.193.163.32:8000']
proxy_support=urllib.request.ProxyHandler({'http':random.choice(iplist)})
opener=urllib.request.build_opener(proxy_support)
opener.addheaders=[('User-Agent','Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.154 Safari/537.36 LBBROWSER')]
urllib.request.install_opener(opener)'''
response=urllib.request.urlopen(req)
html=response.read() return htmldef get_page(url):
html=url_open(url).decode('utf-8')
a=html.find('current-comment-page')+23
b=html.find(']',a) #print(html[a:b])
return html[a:b]def find_imgs(url):
html=url_open(url).decode('utf-8')
img_addrs=[]
a=html.find('img src=') while a!=-1:
b=html.find('.jpg',a,a+140) if b!=-1: if html[a+9]!='h':
img_addrs.append('http:'+html[a+9:b+4]) else:
img_addrs.append(html[a+9:b+4]) else:
b=a+9
a=html.find('img src=',b) for each in img_addrs:
print(each+'我的打印') return img_addrsdef save_imgs(folder,img_addrs):
for each in img_addrs: #print('one was saved')
filename=each.split('/')[-1] with open(filename,'wb') as f:
img=url_open(each)
f.write(img)def download_mm(folder='ooxx',pages=10):
os.mkdir(folder)
os.chdir(folder)
url=""
page_num=int(get_page(url)) for i in range(pages):
page_num=page_num-1
page_url=url+'page-'+str(page_num)+'#comments'
img_addrs=find_imgs(page_url)
save_imgs(folder,img_addrs)if __name__=='__main__':
download_mm()
完成
运行结果
❸ 如何用Python做爬虫
在我们日常上网浏览网页的时候,经常会看到一些好看的图片,我们就希望把这些图片保存下载,或者用户用来做桌面壁纸,或者用来做设计的素材。
我们最常规的做法就是通过鼠标右键,选择另存为。但有些图片鼠标右键的时候并没有另存为选项,还有办法就通过就是通过截图工具截取下来,但这样就降低图片的清晰度。好吧其实你很厉害的,右键查看页面源代码。
我们可以通过python来实现这样一个简单的爬虫功能,把我们想要的代码爬取到本地。下面就看看如何使用python来实现这样一个功能。
❹ 如何用python实现爬取微博相册所有图片
三种方案:
1.直接用Python的requests库直接爬取,不过这个需要手动做的事情就比较多了,基本上就看你的Python功力了
2.使用scrapy爬虫框架,这个框架如果不熟悉的话只能自己先去了解下这个框架怎么用
3.使用自动测试框架selemium模拟登录操作,及图片爬取,这个对于大多数会点Python编码的人来说是最好的选择了,他比较直观的能看到怎么去获取数据
每种方案的前提都是你必须有一定基础的编码能力才行,不是随便一个人就能用的
❺ 如何入门 Python 爬虫
Python入门程度的基础很简单:
1、简单的python语法,不需要什么很深的东西
2、请求库用法(requests、aiohttp等)
3、简单的抓包/抠URL
4、xpath、正则表达式的使用,且能在不用生成工具的情况下自己写出语句提取数据
以上四点已经足够让你爬一些简单的网站了,但仅仅是这个程度而已的话,就还没那些傻瓜式爬虫工具强呢。你还需要JavaScript/Android/iOS逆向知识(核心,杂七杂八的那些这里不一一列举,太多了),用于破加密请求参数、反爬等各种阻止你获取到数据的东西。
❻ 想学习Python爬虫,有什么推荐的书或者教程吗
Python爬虫入门看什么书好呢?我为你推荐一本书,手把手教你学Python。
这本书是一本实战性的网络爬虫秘笈,在本书中不仅讲解了如何编写爬虫,还讲解了流行的网络爬虫的使用。而且这本色书的作者在Python领域有着非常深厚的积累,不仅精通Python网络爬虫,而且在Python机器学习等领域都有着丰富的实战经验,所以说这本书是Python爬虫入门人员必备的书籍。
这本书总共从三个维度讲解了Python爬虫入门,分别是:
技术维度:详细讲解了Python网络爬虫实现的核心技术,包括网络爬虫的工作原理、如何用urllib库编写网络爬虫、爬虫的异常处理、正则表达式、爬虫中Cookie的使用、爬虫的浏览器伪装技术、定向爬取技术、反爬虫技术,以及如何自己动手编写网络爬虫;
工具维度:以流行的Python网络爬虫框架Scrapy为对象,详细讲解了Scrapy的功能使用、高级技巧、架构设计、实现原理,以及如何通过Scrapy来更便捷、高效地编写网络爬虫;
实战维度:以实战为导向,是本书的主旨,除了完全通过手动编程实现网络爬虫和通过Scrapy框架实现网络爬虫的实战案例以外,本书还有博客爬取、图片爬取、模拟登录等多个综合性的网络爬虫实践案例。
Python爬虫入门可能有些人会觉得很难,但是我们只要选对老师至少找对一本正确的学习书籍,那么Python爬虫入门就真的没有那么难。
千锋网站上有全套的Python教程,你可以去下载学习试试
❼ python怎么输入图片
python导入图片的方法:
一、直接从源图片中导入(图片位于images文件夹内)self.label1=QLabel(self)
self.label1.setPixmap(QPixmap(r"images/head.jpg"))
layout.addWidget(self.label1)
#或者 layout.addWidget(QLabel(self, pixmap=QPixmap("images/head.jpg")))
二、利用qrc资源导入
1、先写qrc文件
images/head.jpg
images/body.jpg
2、将qrc文件转化成py文件
转化命令为:pyrcc5 res.qrc -o res_rc.py
3、导入res_rc.py:import res_rc
4、layout.addWidget(QLabel(self,pixmap=QPixmap(":/images/head.jpg")))
注意需要添加:/符号作为前缀。
❽ 如何使用python爬取到高清原图
#-*-coding:utf8-*-
#2013.12.3619:41wnlo-c209
#抓取dbmei.com的图片。
frombs4importBeautifulSoup
importos,sys,urllib2
#创建文件夹,昨天刚学会
path=os.getcwd() #获取此脚本所在目录
new_path=os.path.join(path,u'豆瓣妹子')
ifnotos.path.isdir(new_path):
os.mkdir(new_path)
defpage_loop(page=0):
url='http://www.dbmeizi.com/?p=%s'%page
content=urllib2.urlopen(url)
soup=BeautifulSoup(content)
my_girl=soup.find_all('img')
#加入结束检测,写的不好....
ifmy_girl==[]:
printu'已经全部抓取完毕'
sys.exit(0)
printu'开始抓取'
forgirlinmy_girl:
link=girl.get('src')
flink='http://www.dbmeizi.com/'+link
printflink
content2=urllib2.urlopen(flink).read()
withopen(u'豆瓣妹子'+'/'+flink[-11:],'wb')ascode:#在OSC上现学的
code.write(content2)
page=int(page)+1
printu'开始抓取下一页'
print'the%spage'%page
page_loop(page)
page_loop()
print"~~~~~~~~~~~~~~~~~~~~~~~~~~END~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
#为了避免双击的时候直接一闪退出,在最后面加了这么一句
raw_input("Press<Enter>ToQuit!")
❾ Python爬取数据后,如何将这些数据进行图表绘制
爬取到的数据放到一个列表常量,变量在放到你红框位置就好了
❿ 如何学习python爬虫
爬虫是入门Python最好的方式,没有之一。 Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而
言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的
使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有的人则认为先要掌握网页的知识,遂 开始 HTMLCSS,结果入了前端的坑 ,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从 一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。 那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。 这里给你一
条平滑的、零基础快速入门的学习路径。
python学习网,免费的python学习网站,欢迎在线学习!
学习 Python 包并实现基本的爬虫过程
大部分爬虫都是按 “发送请求——获得页面——解析页面——抽取并储存内容” 这样的流程来进行,这其实也是模拟了我们使用浏览器
获取网页信息的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等, 建议从requests+Xpath 开始 ,requests 负责连接网
站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多, 一
般的静态网站根本不在话下,豆瓣、糗事网络、腾讯新闻等基本上都可以上手了 。
掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如 访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等 。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。
学习 scrapy,搭建工程化的爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy
框架就非常有用了。
scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人
惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。
学习数据库基础,应对大规模数据存储
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前
比较主流的 MongoDB 就OK。
MongoDB 可以方便你去存储一些非结构化的数据 ,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在
Python中操作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是 数据如何入库、如何进行提取 ,在需要的时候再学习就行。
分布式爬虫,实现大规模并发采集
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字: 分布
式爬虫 。
分布式这个东西,听起来很恐怖, 但其实就是利用多线程的原理让多个爬虫同时工作 ,需要你掌握 Scrapy + MongoDB + Redis 这三种工具 。
Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务
队列。
所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架
构了,实现一些更加自动化的数据获取。
你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际
的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好 。