‘壹’ Loguru:python 日志终极解决方案
日志的作用非常重要,日志可以记录用户的操作、程序的异常,还可以为数据分析提供依据,日志的存在意义就是为了能够在程序在运行过程中记录错误,方便维护和调试,能够快速定位出错的地方,减少维护成本。每个程序员都应该知道,不是为了记录日志而记录日志,日志也不是随意记的。要实现能够只通过日志文件还原整个程序执行的过程,达到能透明地看到程序里执行情况,每个线程、每个过程到底执行到哪的目的。日志就像飞机的黑匣子一样,应当能够复原异常的整个现场乃至细节!
最常见的是把输出函数 print() 当作日志记录的方式,直接打印各种提示信息,常见于个人练习项目里,通常是懒得单独配置日志,而且项目太小不需要日志信息,不需要上线,不需要持续运行,完整的项目不推荐直接打印日志信息,现实中也几乎没有人这么做。
我们可以在不少小项目里面看到作者自己写了一个日志模板,通常利用 print() 或者 sys.stdout 稍微封装一下即可实现简单的日志输出,这里的 sys.stdout 是 Python 中的标准输出流, print() 函数是对 sys.stdout 的高级封装,当我们在 Python 中打印对象调用 print(obj) 时候,事实上是调用了 sys.stdout.write(obj+'\n') , print() 将内容打印到了控制台,然后追加了一个换行符 \n 。
自写日志模板适合比较小的项目,可以按照自己的喜好编写模板,不需要太多复杂配置,方便快捷,但是这种记录日志的方式并不是很规范,有可能你自己觉得阅读体验不错,但是别人在接触你的项目的时候往往需要花费一定的时间去学习日志的逻辑、格式、输出方式等,比较大的项目同样不推荐这种方法。
一个简单的自写日志模板举例:
日志模板 log.py:
调用日志模块:
日志输出:
在一个完整的项目中,大多数人都会引入专门的日志记录库,而 Python 自带的标准库 logging 就是专门为日志记录而生的,logging 模块定义的函数和类为应用程序和库的开发实现了一个灵活的事件日志系统。由标准库模块提供日志记录 API 的关键好处是所有 Python 模块都可以使用这个日志记录功能。所以,你的应用日志可以将你自己的日志信息与来自第三方模块的信息整合起来。
logging 模块虽然强大,但是其配置也是比较繁琐的,在大型项目中通常需要单独初始化日志、配置日志格式等等,K哥在日常使用中通常都会对 logging 做如下的封装写法,使日志可以按天保存,保留15天的日志,可以配置是否输出到控制台和文件,如下所示:
输出日志:
它在控制台中是这样的:
当然,如果你不需要很复杂的功能,希望简洁一点,仅仅需要在控制台输出一下日志的话,也可以只进行简单的配置:
对于 logging 模块,即便是简单的使用,也需要自己定义格式,这里介绍一个更加优雅、高效、简洁的第三方模块:loguru,官方的介绍是:Loguru is a library which aims to bring enjoyable logging in Python. Loguru 旨在为 Python 带来愉快的日志记录。这里引用官方的一个 GIF 来快速演示其功能:
Loguru 仅支持 Python 3.5 及以上的版本,使用 pip 安装即可:
Loguru 的主要概念是只有一个:logger
控制台输出:
可以看到不需要手动设置,Loguru 会提前配置一些基础信息,自动输出时间、日志级别、模块名、行号等信息,而且根据等级的不同,还自动设置了不同的颜色,方便观察,真正做到了开箱即用!
如果想自定义日志级别,自定义日志格式,保存日志到文件该怎么办?与 logging 模块不同,不需要 Handler,不需要 Formatter,只需要一个 add() 函数就可以了,例如我们想把日志储存到文件:
我们不需要像 logging 模块一样再声明一个 FileHandler 了,就一行 add() 语句搞定,运行之后会发现目录下 test.log 里面同样出现了刚刚控制台输出的 debug 信息。
与 add() 语句相反, remove() 语句可以删除我们添加的配置:
此时控制台会输出两条 debug 信息:
而 test.log 日志文件里面只有一条 debug 信息,原因就在于我们在第二条 debug 语句之前使用了 remove() 语句。
Loguru 对输出到文件的配置有非常强大的支持,比如支持输出到多个文件,分级别分别输出,过大创建新文件,过久自动删除等等。 下面我们来详细看一下 add() 语句的详细参数:
基本语法:
基本参数释义:
当且仅当 sink 是协程函数时,以下参数适用:
当且仅当 sink 是文件路径时,以下参数适用:
这么多参数可以见识到 add() 函数的强大之处,仅仅一个函数就能实现 logging 模块的诸多功能,接下来介绍几个比较常用的方法。
add() 函数的 rotation 参数,可以实现按照固定时间创建新的日志文件,比如设置每天 0 点新创建一个 log 文件:
设置超过 500 MB 新创建一个 log 文件:
设置每隔一个周新创建一个 log 文件:
add() 函数的 retention 参数,可以设置日志的最长保留时间,比如设置日志文件最长保留 15 天:
设置日志文件最多保留 10 个:
也可以是一个 datetime.timedelta 对象,比如设置日志文件最多保留 5 个小时:
add() 函数的 compression 参数,可以配置日志文件的压缩格式,这样可以更加节省存储空间,比如设置使用 zip 文件格式保存:
其格式支持: gz 、 bz2 、 xz 、 lzma 、 tar 、 tar.gz 、 tar.bz2 、 tar.xz
Loguru 在输出 log 的时候还提供了非常友好的字符串格式化功能,相当于 str.format() :
输出:
在 Loguru 里可以直接使用它提供的装饰器就可以直接进行异常捕获,而且得到的日志是无比详细的:
日志输出:
在控制台的输出是这样的:
相比 Logging,Loguru 无论是在配置方面、日志输出样式还是异常追踪,都远优于 Logging,使用 Loguru 无疑能提升开发人员效率。本文仅介绍了一些常用的方法,想要详细了解可参考 Loguru 官方文档 或关注 Loguru GitHub 。
‘贰’ python用logging模块写日志文件无输出
来个简单点的
#-*-coding:utf-8-*-
importlogging
__author__='lpe234'
__date__='2015-04-30'
LOGGING_FILE='xx.log'
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s%(filename)s[line:%(lineno)d]%(levelname)s%(message)s',
filename=LOGGING_FILE,
filemode='a+'
)
logging.debug('debug')
logging.info('info')
logging.exception('exception')
logging.error('error')
logging.critical('critical')
‘叁’ python程序中logging怎么用
简单将日志打印到屏幕:
[python] view plain
import logging
logging.debug('debug message')
logging.info('info message')
logging.warning('warning message')
logging.error('error message')
logging.critical('critical message')
输出:
WARNING:root:warning message
ERROR:root:error message
CRITICAL:root:critical message
可见,默认情况下Python的
logging模块将日志打印到了标准输出中,且只显示了大于等于WARNING级别的日志,这说明默认的日志级别设置为WARNING(日志级别等级
CRITICAL > ERROR > WARNING > INFO > DEBUG >
NOTSET),默认的日志格式为日志级别:Logger名称:用户输出消息。
灵活配置日志级别,日志格式,输出位置
[python] view plain
import logging
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S',
filename='/tmp/test.log',
filemode='w')
logging.debug('debug message')
logging.info('info message')
logging.warning('warning message')
logging.error('error message')
logging.critical('critical message')
查看输出:
cat /tmp/test.log
Mon, 05 May 2014 16:29:53 test_logging.py[line:9] DEBUG debug message
Mon, 05 May 2014 16:29:53 test_logging.py[line:10] INFO info message
Mon, 05 May 2014 16:29:53 test_logging.py[line:11] WARNING warning message
Mon, 05 May 2014 16:29:53 test_logging.py[line:12] ERROR error message
Mon, 05 May 2014 16:29:53 test_logging.py[line:13] CRITICAL critical message
可见在logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有
filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。
format参数中可能用到的格式化串:
%(name)s Logger的名字
%(levelno)s 数字形式的日志级别
%(levelname)s 文本形式的日志级别
%(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
%(filename)s 调用日志输出函数的模块的文件名
%(mole)s 调用日志输出函数的模块名
%(funcName)s 调用日志输出函数的函数名
%(lineno)d 调用日志输出函数的语句所在的代码行
%(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
%(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
%(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
%(thread)d 线程ID。可能没有
%(threadName)s 线程名。可能没有
%(process)d 进程ID。可能没有
%(message)s用户输出的消息
‘肆’ Python日志—Python日志模块logging介绍
从事与软件相关工作的人,应该都听过“日志”一词。
日志就是跟踪软件运行时事件的方法,为了能够在程序运行过程中记录错误。
通过日志记录程序的运行,方便我们查询信息,以便追踪问题、进行维护和调试、还是数据分析。
并且各编程语言都形成了各自的日志体系和相应的框架。
日志的作用总结:
首先我们要树立一个观点,那就是“不是为了记录日志而记录日志,日志也不是随意记的”。要实现能够只通过日志文件还原整个程序执行的过程,达到能透明地看到程序里执行情况,每个线程每个过程到底执行结果的目的。日志就像飞机的黑匣子一样,应当能够复原异常的整个现场乃至细节。
在项目中,日志这个功能非常重要,我们要重视起来。
在Python中,使用logging模块来进行日志的处理。
logging是Python的内置模块,主要用于将日志信息进行格式化内容输出,可将格式化内容输出到文件,也可输出到屏幕。
我们在开发过程中,常用print()函数来进行调试,但是在实际应用的部署时,我们要将日志信息输出到文件中,方便后续查找以及备份。
在我们使用日志管理时,我们也可以将日志格式化成Json对象转存到ELK中方便图形化查看及管理。
logging模块将日志系统从高向低依次定义了四个类,分别是logger(日志器)、handler(处理器)、filter(过滤器)和formatter(格式器)。其中由日志器生成的实例将接管原本日志记录函数logging.log的功能。
说明:
我们先来思考下下面的两个问题:
在软件开发阶段或部署开发环境时,为了尽可能详细的查看应用程序的运行状态来保证上线后的稳定性,我们可能需要把该应用程序所有的运行日志全部记录下来进行分析,这是非常耗费机器性能的。
当应用程序正式发布或在生产环境部署应用程序时,我们通常只需要记录应用程序的异常信息、错误信息等,这样既可以减小服务器的I/O压力,也可以避免我们在排查故障时被淹没在日志的海洋里。
那么怎样才能在不改动应用程序代码的情况下,根据事件的重要性或者称之为等级,实现在不同的环境中,记录不同详细程度的日志呢?
这就是日志等级的作用了,我们通过配置文件指定我们需要的日志等级就可以了。
说明:
总结:
开发应用程序时或部署开发环境时,可以使用DEBUG或INFO级别的日志获取尽可能详细的日志信息,可以方便进行开发或部署调试。 应用上线或部署生产环境时,应用使用WARNING或ERROR或CRITICAL级别的日志,来降低机器的I/O压力和提高获取错误日志信息的效率。 日志级别的指定通常都是在应用程序的配置文件中进行指定的。 不同的应用程序所定义的日志等级会有所差别,根据实际需求来决定。
‘伍’ 多进程环境python logging打印日志混乱问题
解决办法如下:
多么痛的领悟,滑腔困扰了这么久的问题其实就是一个参数配置错了。
fileMode:表示日志山让侍文件的打开方式。w-直接写,使用这个配置当系统重启的时候日志会清空,一个进程打开后其他进程是无法使用的;a-尾部逗吵追加,大家都可以打开往文件结尾进行追加写入。
本人主语言是java,转到python后日志这块踩了几个坑。再说说另外一个坑,就是异常堆栈的打印问题,在java中logger是可以使用error直接打印出来的。在python中error跟其他日志记录方法没太大差别,是无法打印异常堆栈的,打印堆栈请使用 logger.exception("异常说明", e) 。