导航:首页 > 编程语言 > python资源锁

python资源锁

发布时间:2024-03-08 02:27:42

python除了互斥锁还有什么锁

python提供了“可重入锁”:threading.RLock。RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。
直到一个线程所有的acquire都被release,其他的线程才能获得资源。这里以例1为例,如果使用RLock代替Lock,则不会发生死锁!

㈡ Python多线程之threading之Lock对象

要介绍Python的 threading 模块中的 Lock 对象前, 首先应该了解以下两个概念:

1.基本概念 : 指某个函数/函数库在多线程环境中被调用时, 能伍掘够正确地处理多个线程之间的 共享变量 , 使程序功能正常完成. 多个线程访问同一个对象时, 如果不用考虑这些线程在运行时环境下的调度和交替执行, 也不需要进行额外的同步, 或者在调用方进行任何其他操作,调用这个对象的行为都可以获得正确的结果, 那么这个对象就是线程安全的. 或者说: 一个类或者程序所提供的接口对于线程来说是 原子操作 或者多个线程之间的切换不会导致该接口的执行结果存在二义性, 也就是说我们不用考虑同步的问题.

2.示例 : 比如有间银行只有1000元, 而两个人同时提早橘没领1000元时,就有可能拿到总计2000元的金额. 为了避免这个问题, 该间银行提款时应该使用 互斥锁 , 即意味着对同一个资源处理时, 前一个提领交易完成后才处理下一笔交易.

3.线程安全意义 :

4.是否线程安全 :

5.资源竞争 : 即多个线程对同一个资源的改写时, 存在的一种竞争. 如果仅仅是读操作, 则不存在资源竞争陆纳的情况.

1.基本概念 : 因为存在上述所说的 线程安全与资源竞争 的情况, 所以引入了 线程锁 . 即通过锁来进行资源请求的限制, 以保证同步执行,避免资源被污染或预期结果不符. 线程锁存在两种状态: 锁定(locked)和非锁定(unlocked).

2.基本方法 :

3.使用示例 :

上述示例如果在不加锁的情况下, 将会出现打印顺序混乱的情况, 不过最终结果都是正确的, 因为即使线程交替执行, 但最终的结果都是一致.

㈢ Python中的各种锁

大致罗列一下:
一、全局解释器锁(GIL)
1、什么是全局解释器锁
每个CPU在同一时间只能执行一个线程,那么其他的线程就必须等待该线程的全局解释器,使用权消失后才能使用全局解释器,即使多个线程直接不会相互影响在同一个进程下也只有一个线程使用cpu,这样的机制称为全局解释器锁(GIL)。GIL的设计简化了CPython的实现,使的对象模型包括关键的内建类型,如:字典等,都是隐含的,可以并发访问的,锁住全局解释器使得比较容易的实现对多线程的支持,但也损失了多处理器主机的并行计算能力。
2、全局解释器锁的好处
1)、避免了大量的加锁解锁的好处
2)、使数据更加安全,解决多线程间的数据完整性和状态同步
3、全局解释器的缺点
多核处理器退化成单核处理器,只能并发不能并行。
4、GIL的作用:
多线程情况下必须存在资源的竞争,GIL是为了保证在解释器级别的线程唯一使用共享资源(cpu)。
二、同步锁
1、什么是同步锁?
同一时刻的一个进程下的一个线程只能使用一个cpu,要确保这个线程下的程序在一段时间内被cpu执,那么就要用到同步锁。
2、为什么用同步锁?
因为有可能当一个线程在使用cpu时,该线程下的程序可能会遇到io操作,那么cpu就会切到别的线程上去,这样就有可能会影响到该程序结果的完整性。
3、怎么使用同步锁?
只需要在对公共数据的操作前后加上上锁和释放锁的操作即可。
4、同步锁的所用:
为了保证解释器级别下的自己编写的程序唯一使用共享资源产生了同步锁。
三、死锁
1、什么是死锁?
指两个或两个以上的线程或进程在执行程序的过程中,因争夺资源或者程序推进顺序不当而相互等待的一个现象。
2、死锁产生的必要条件?
互斥条件、请求和保持条件、不剥夺条件、环路等待条件
3、处理死锁的基本方法?
预防死锁、避免死锁(银行家算法)、检测死锁(资源分配)、解除死锁:剥夺资源、撤销进程
四、递归锁
在Python中为了支持同一个线程中多次请求同一资源,Python提供了可重入锁。这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。递归锁分为可递归锁与非递归锁。
五、乐观锁
假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。
六、悲观锁
假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。
python常用的加锁方式:互斥锁、可重入锁、迭代死锁、互相调用死锁、自旋锁。

㈣ python多个线程锁可提高效率吗

首先,Python的多线程本身就是效率极低的,因为有GIL(Global Interpreter Lock:全局解释锁)机制的限制,其作用简单说就是:对于一个解释器,只能有一个线程在执行bytecode。
所以如果为了追求传统意义上多线程的效率,在Python界还是用多进程(multiprocessing)吧……
这里你用了多线程,且用了锁来控制公共资源,首先锁这个东西会导致死锁,不加锁反而没有死锁隐患,但会有同步问题。
另外,如果不同线程操作的是不同的文件,是不存在同步问题的,如果操作同一个文件,我建议采用Queue(队列)来处理。
总的来说,用单线程就好了,因为Python多线程本身就没什么效率,而且单线程也不用考虑同步问题了。非要追求效率的话,就用多进程吧,同样也要考虑进程锁。

㈤ python多线程全局变量和锁

1.python中数据类型,int,float,复数,字符,元组,做全局变量时需要在函数里面用global申明变量,才能对变量进行操作。

而,对象,列表,词典,不需要声明,直接就是全局的。

2.线程锁mutex=threading.Lock()

创建后就是全局的。线程调用函数可以直接在函数中使用。

mutex.acquire()开启锁

mutex=release()关闭锁

要注意,死锁的情况发生。

注意运行效率的变化:

正常1秒,完成56997921

加锁之后,1秒只运行了531187,相差10倍多。

3.继承.threading.Thread的类,无法调用__init__函数,无法在创建对象时初始化新建的属性。

4.线程在cpu的执行,有随机性

5. 新建线程时,需要传参数时,args是一个元组,如果只有一个参数,一定后面要加一个,符号。不能只有一个参数否则线程会报创建参数错误。threading.Thread(target=fuc,args=(arg,))

㈥ python多线程更改临界资源的时候有必要加锁吗

mutex = threading.Lock()
#锁的使用
#创建锁
mutex = threading.Lock()
#锁定
mutex.acquire([timeout])
#释放
mutex.release()

概念
好几个人问我给资源加锁是怎么回事,其实并不是给资源加锁, 而是用锁去锁定资源,你可以定义多个锁, 像下面的代码, 当你需要独占某一资源时,任何一个锁都可以锁这个资源
就好比你用不同的锁都可以把相同的一个门锁住是一个道理

㈦ python避免死锁方法实例分析

python避免死锁方法实例分析
本文实例讲述了python避免死锁方法。分享给大家供大家参考。具体分析如下:
当两个或者更多的线程在等待资源的时候就会产生死锁,两个线程相互等待。
在本文实例中 thread1 等待thread2释放block , thread2等待thtead1释放ablock,
避免死锁的原则:
1. 一定要以一个固定的顺序来取得锁,这个列子中,意味着首先要取得alock, 然后再去block
2. 一定要按照与取得锁相反的顺序释放锁,这里,应该先释放block,然后是alock
import threading ,time
a = 5
alock = threading.Lock()
b = 5
block = threading.Lock()
def thread1calc():
print "thread1 acquiring lock a"
alock.acquire()
time.sleep(5)
print "thread1 acquiring lock b"
block.acquire()
a+=5
b+=5
print "thread1 releasing both locks"
block.release()
alock.release()
def thread2calc():
print "thread2 acquiring lock b"
block.acquire()
time.sleep(5)
print "thread2 acquiring lock a"
alock.acquire()
time.sleep(5)
a+=10
b+=10
print "thread2 releasing both locks"
block.release()
alock.release()
t = threading.Thread(target = thread1calc)
t.setDaemon(1)
t.start()
t = threading.Thread(target = thread2calc)
t.setDaemon(2)
t.start()
while 1:
time.sleep(300)

输出:
thread1 acquiring lock a
thread2 acquiring lock b
thread1 acquiring lock b
thread2 acquiring lock a
希望本文所述对大家的Python程序设计有所帮助。

阅读全文

与python资源锁相关的资料

热点内容
工商银行app房贷还款在哪里看 浏览:759
最新民生通讯app从哪里下载 浏览:378
如何在发短信时给自己手机号加密 浏览:773
扩展单片机ram寻址方式是什么 浏览:318
phpide是什么 浏览:752
单片机相关软件 浏览:818
eclipse如何编译c11 浏览:286
加密游戏app 浏览:73
vs2010编译嵌套太深 浏览:980
程序员面试注意事项 浏览:740
scratch编译为h5 浏览:208
威联通套件编译 浏览:232
清刻pdf 浏览:984
可编程延时发生器 浏览:93
滨州用服务器织梦要怎么上传文件 浏览:867
java7与java8 浏览:959
真空压缩袋什么材质好 浏览:936
excel批量见建文件夹 浏览:558
黑马程序员就业班笔记 浏览:370
单片机供电自锁电路设计 浏览:56