经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。
Scrapy是一个快速、功能强大的网络爬虫框架。
可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。
简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。
使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。
当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。
PyCharm安装
测试安装:
出现框架版本说明安装成功。
掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!
先上图:
整个结构可以简单地概括为: “5+2”结构和3条数据流
5个主要模块(及功能):
(1)控制所有模块之间的数据流。
(2)可以根据条件触发事件。
(1)根据请求下载网页。
(1)对所有爬取请求进行调度管理。
(1)解析DOWNLOADER返回的响应--response。
(2)产生爬取项--scraped item。
(3)产生额外的爬取请求--request。
(1)以流水线方式处理SPIDER产生的爬取项。
(2)由一组操作顺序组成,类似流水线,每个操作是一个ITEM PIPELINES类型。
(3)清理、检查和查重爬取项中的HTML数据并将数据存储到数据库中。
2个中间键:
(1)对Engine、Scheler、Downloader之间进行用户可配置的控制。
(2)修改、丢弃、新增请求或响应。
(1)对请求和爬取项进行再处理。
(2)修改、丢弃、新增请求或爬取项。
3条数据流:
(1):图中数字 1-2
1:Engine从Spider处获得爬取请求--request。
2:Engine将爬取请求转发给Scheler,用于调度。
(2):图中数字 3-4-5-6
3:Engine从Scheler处获得下一个要爬取的请求。
4:Engine将爬取请求通过中间件发送给Downloader。
5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。
6:Engine将收到的响应通过中间件发送给Spider处理。
(3):图中数字 7-8-9
7:Spider处理响应后产生爬取项--scraped item。
8:Engine将爬取项发送给Item Pipelines。
9:Engine将爬取请求发送给Scheler。
任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。
作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。
Scrapy采用命令行创建和运行爬虫
PyCharm打开Terminal,启动Scrapy:
Scrapy基本命令行格式:
具体常用命令如下:
下面用一个例子来学习一下命令的使用:
1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:
执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命名为pythonDemo。
2.产生一个Scrapy爬虫,以教育部网站为例http://www.moe.gov.cn:
命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。
命令仅用于生成demo.py文件,该文件也可以手动生成。
观察一下demo.py文件:
3.配置产生的spider爬虫,也就是demo.py文件:
4.运行爬虫,爬取网页:
如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。
以上就是Scrapy框架的简单使用了。
Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。
Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。
Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来操作。
❷ 如何python 中运行scapy shell
启用shell
可以使用如下命令启用shell
[python] view plain
scrapy shell <url>
其中<url>就是你想抓取的页面url
使用shell
Scrapy shell可以看成是一个内置了几个有用的功能函数的python控制台程序。
功能函数
shelp() - 输出一系列可用的对象和函数
fetch(request_or_url)-从给定的url或既有的request请求对象重新生成response对象,并更新原有的相关对象
view(response)-使用浏览器打开原有的response对象(换句话说就是html页面)
Scrapy 对象
使用Scrapy shell下载指定页面的时候,会生成一些可用的对象,比如Response对象和Selector对象(Html和XML均适用)
这些可用的对象有:
crawler - 当前的Crawler对象
spider
request - 最后获取页面的请求对象
response - 一个包含最后获取页面的响应对象
sel - 最新下载页面的Selector对象
settings - 当前的Scrapy settings
Scrapy shell例子
以我的个人博客作为测试:http://blog.csdn.net/php_fly
首先,我们启动shell
[python] view plain
scrapy shell http://blog.csdn.net/php_fly --nolog
以上命令执行后,会使用Scrapy downloader下载指定url的页面数据,并且打印出可用的对象和函数列表
[python] view plain
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x0000000002AEF7B8>
[s] item {}
[s] request <GET http://blog.csdn.net/php_fly>
[s] response <200 http://blog.csdn.net/php_fly>
[s] sel <Selector xpath=None data=u'<html xmlns="http://www.w3.org/1999/xhtm'>
[s] settings <CrawlerSettings mole=None>
[s] spider <Spider 'default' at 0x4cdb940>
[s] Useful shortcuts:
[s] shelp() Shell help (print this help)
[s] fetch(req_or_url) Fetch request (or URL) and update local objects
[s] view(response) View response in a browser
获取曾是土木人博客的文章列表超链接
[python] view plain
In [9]: sel.xpath("//span[@class='link_title']/a/@href").extract()
Out[9]:
[u'/php_fly/article/details/19364913',
u'/php_fly/article/details/18155421',
u'/php_fly/article/details/17629021',
u'/php_fly/article/details/17619689',
u'/php_fly/article/details/17386163',
u'/php_fly/article/details/17266889',
u'/php_fly/article/details/17172381',
u'/php_fly/article/details/17171985',
u'/php_fly/article/details/17145295',
u'/php_fly/article/details/17122961',
u'/php_fly/article/details/17117891',
u'/php_fly/article/details/14533681',
u'/php_fly/article/details/13162011',
u'/php_fly/article/details/12658277',
u'/php_fly/article/details/12528391',
u'/php_fly/article/details/12421473',
u'/php_fly/article/details/12319943',
u'/php_fly/article/details/12293587',
u'/php_fly/article/details/12293381',
u'/php_fly/article/details/12289803']
修改scrapy shell的请求方式:
[python] view plain
>>> request = request.replace(method="POST")
>>> fetch(request)
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x1e16b50>
...
从Spider中调用Scrapy shell
在爬虫运行过程中,有时需要检查某个响应是否是你所期望的。
这个需求可以通过scrapy.shell.inspect_response函数进行实现
以下是一个关于如何从spider中调用scrapy shell的例子
[python] view plain
from scrapy.spider import Spider
class MySpider(Spider):
name = "myspider"
start_urls = [
"http://example.com",
"http://example.org",
"http://example.net",
]
def parse(self, response):
# We want to inspect one specific response.
if ".org" in response.url:
from scrapy.shell import inspect_response
inspect_response(response)
# Rest of parsing code.
当你启动爬虫的时候,控制台将打印出类似如下的信息
[python] view plain
2014-02-20 17:48:31-0400 [myspider] DEBUG: Crawled (200) <GET http://example.com> (referer: None)
2014-02-20 17:48:31-0400 [myspider] DEBUG: Crawled (200) <GET http://example.org> (referer: None)
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x1e16b50>
...
>>> response.url
'http://example.org'
注意:当Scrapy engine被scrapy shell占用的时候,Scrapy shell中的fetch函数是无法使用的。 然而,当你退出Scrapy shell的时候,蜘蛛将从停止的地方继续爬行
❸ 如何在scrapy框架下,用python实现爬虫自动跳转页面来抓去网页内容
Scrapy是一个用Python写的Crawler Framework,简单轻巧,并且非常方便。Scrapy使用Twisted这个异步网络库来处理网络通信,架构清晰,并且包含了各种中间件接口,可以灵活地完成各种需求。Scrapy整体架构如下图所示:
根据架构图介绍一下Scrapy中的各大组件及其功能:
Scrapy引擎(Engine):负责控制数据流在系统的所有组建中流动,并在相应动作发生触发事件。
调度器(Scheler):从引擎接收Request并将它们入队,以便之后引擎请求request时提供给引擎。
下载器(Downloader):负责获取页面数据并提供给引擎,而后提供给Spider。
Spider:Scrapy用户编写用于分析Response并提取Item(即获取到的Item)或额外跟进的URL的类。每个Spider负责处理一个特定(或一些网站)。
Item Pipeline:负责处理被Spider提取出来的Item。典型的处理有清理验证及持久化(例如存储到数据库中,这部分后面会介绍存储到MySQL中,其他的数据库类似)。
下载器中间件(Downloader middlewares):是在引擎即下载器之间的特定钩子(special hook),处理Downloader传递给引擎的Response。其提供了一个简便的机制,通过插入自定义代码来扩展Scrapy功能(后面会介绍配置一些中间并激活,用以应对反爬虫)。
Spider中间件(Spider middlewares):是在引擎及Spider之间的特定钩子(special hook),处理Spider的输入(response)和输出(Items即Requests)。其提供了一个简便的机制,通过插入自定义的代码来扩展Scrapy功能。
❹ python爬虫-35-scrapy实操入门,一文带你入门,保姆级教程
如果在 windows 系统下,提示这个错误 MoleNotFoundError: No mole named 'win32api' ,那么使用以下命令可以解决: pip install pypiwin32 。
示例如下:
命令:
示例如下:
创建完毕之后可以看下具体创建了什么文件;
我们使用 pycharm 打开看下;
scrapy 爬虫项目中每个文件的作用如下:
------ “运维家” ------
------ “运维家” ------
------ “运维家” ------
linux系统下,mknodlinux,linux目录写权限,大白菜能安装linux吗,linux系统创建文件的方法,领克linux系统怎么装软件,linux文本定位;
ocr识别linux,linux锚定词尾,linux系统使用记录,u盘有linux镜像文件,应届生不会Linux,linux内核64位,linux自启动管理服务;
linux计算文件夹大小,linux设备名称有哪些,linux能用的虚拟机吗,linux系统进入不了命令行,如何创建kalilinux,linux跟so文件一样吗。
❺ python爬虫的工作步骤
当前处于一个大数据的时代,一般网站数据来源有二:网站用户自身产生的数据和网站从其他来源获取的数据,今天要分享的是如何从其他网站获取你想要的数据。
目前最适合用于写爬虫的语言是python,python中最受欢迎的爬虫框架是scrapy,本文围绕scrapy来展开讲解爬虫是怎么工作的。
1.如下图所示,爬虫从编写的spider文件中的start_urls开始,这个列表中的url就是爬虫抓取的第一个网页,它的返回值是该url对应网页的源代码,我们可以用默认的parse(self,response)函数去打印或解析这个源代码
2.我们获取到源代码之后,就可以从网页源代码中找到我们想要的信息或需要进一步访问的url,提取信息这一步,scrapy中集成了xpath,正则(re),功能十分强大,提取到信息之后会通过yield进入到中间件当中。
中间件包括爬虫中间件和下载中间件,爬虫中间件主要用于设置处理爬虫文件中的代码块,下载中间件主要用于判断爬虫进入网页前后的爬取状态,在此中间件中,你可以根据爬虫的返回状态去做进一步判断。
最后我们将yield过来的item,即就是我们想要的数据会在pipeline.py文件中进行处理,存入数据库,写入本地文件,都可以在这里进行,另外,为了减少代码冗余,建议所有与设置参数有关的参数,都写在settings.py中去
❻ 如何用Python爬取搜索引擎的结果
我选取的是爬取网络知道的html 作为我的搜索源数据,目前先打算做网页标题的搜索,选用了 Python 的 scrapy 库来对网页进行爬取,爬取网页的标题,url,以及html,用sqlist3来对爬取的数据源进行管理。
爬取的过程是一个深度优先的过程,设定四个起始 url ,然后维护一个数据库,数据库中有两个表,一个 infoLib,其中存储了爬取的主要信息:标题,url ,html;另一个表为urlLib,存储已经爬取的url,是一个辅助表,在我们爬取每个网页前,需要先判断该网页是否已爬过(是否存在urlLib中)。在数据存储的过程中,使用了SQL的少量语法,由于我之前学过 MySQL ,这块处理起来比较驾轻就熟。
深度优先的网页爬取方案是:给定初始 url,爬取这个网页中所有 url,继续对网页中的 url 递归爬取。代码逐段解析在下面,方便自己以后回顾。
1.建一个 scrapy 工程:
关于建工程,可以参看这个scrapy入门教程,通过运行:
[python] view plain
scrapy startproject ***
在当前目录下建一个scrapy 的项目,然后在 spiders 的子目录下建立一个 .py文件,该文件即是爬虫的主要文件,注意:其中该文件的名字不能与该工程的名字相同,否则,之后调用跑这个爬虫的时候将会出现错误,见ImportError。
2.具体写.py文件:
[python] view plain
import scrapy
from scrapy import Request
import sqlite3
class rsSpider(scrapy.spiders.Spider): #该类继承自 scrapy 中的 spider
name = "" #将该爬虫命名为 “知道”,在执行爬虫时对应指令将为: scrapy crawl
#download_delay = 1 #只是用于控制爬虫速度的,1s/次,可以用来对付反爬虫
allowed_domains = ["..com"] #允许爬取的作用域
url_first = 'http://..com/question/' #用于之后解析域名用的短字符串
start_urls = ["http://..com/question/647795152324593805.html", #python
"http://..com/question/23976256.html", #database
"http://..com/question/336615223.html", #C++
"http://..com/question/251232779.html", #operator system
"http://..com/question/137965104.html" #Unix programing
] #定义初始的 url ,有五类知道起始网页
#add database
connDataBase = sqlite3.connect(".db") #连接到数据库“.db”
cDataBase = connDataBase.cursor() #设置定位指针
cDataBase.execute('''''CREATE TABLE IF NOT EXISTS infoLib
(id INTEGER PRIMARY KEY AUTOINCREMENT,name text,url text,html text)''')
#通过定位指针操作数据库,若.db中 infoLib表不存在,则建立该表,其中主键是自增的 id(用于引擎的docId),下一列是文章的标题,然后是url,最后是html
#url dataBase
cDataBase.execute('''''CREATE TABLE IF NOT EXISTS urlLib
(url text PRIMARY KEY)''')
#通过定位指针操作数据库,若.db中urlLib表不存在,则建立该表,其中只存了 url,保存已经爬过的url,之所以再建一个表,是猜测表的主键应该使用哈希表存储的,查询速度较快,此处其实也可以用一个外键将两个表关联起来
2. .py文件中的parse函数:
.py文件中的parse函数将具体处理url返回的 response,进行解析,具体代码中说明:
[python] view plain
def parse(self,response):
pageName = response.xpath('//title/text()').extract()[0] #解析爬取网页中的名称
pageUrl = response.xpath("//head/link").re('href="(.*?)"')[0] #解析爬取网页的 url,并不是直接使用函数获取,那样会夹杂乱码
pageHtml = response.xpath("//html").extract()[0] #获取网页html
# judge whether pageUrl in cUrl
if pageUrl in self.start_urls:
#若当前url 是 start_url 中以一员。进行该判断的原因是,我们对重复的 start_url 中的网址将仍然进行爬取,而对非 start_url 中的曾经爬过的网页将不再爬取
self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(pageUrl,))
lines = self.cDataBase.fetchall()
if len(lines): #若当前Url已经爬过
pass #则不再在数据库中添加信息,只是由其为跟继续往下爬
else: #否则,将信息爬入数据库
self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
else: #此时进入的非 url 网页一定是没有爬取过的(因为深入start_url之后的网页都会先进行判断,在爬取,在下面的for循环中判断)
self.cDataBase.execute('INSERT INTO urlLib (url) VALUES (?)',(pageUrl,))
self.cDataBase.execute("INSERT INTO infoLib (name,url,html) VALUES (?,?,?)",(pageName,pageUrl,pageHtml))
self.connDataBase.commit() #保存数据库的更新
print "-----------------------------------------------" #输出提示信息,没啥用
for sel in response.xpath('//ul/li/a').re('href="(/question/.*?.html)'): #抓出所有该网页的延伸网页,进行判断并对未爬过的网页进行爬取
sel = "http://..com" + sel #解析出延伸网页的url
self.cDataBase.execute('SELECT * FROM urlLib WHERE url = (?)',(sel,)) #判断该网页是否已在数据库中
lines = self.cDataBase.fetchall()
if len(lines) == 0: #若不在,则对其继续进行爬取
yield Request(url = sel, callback=self.parse)