导航:首页 > 编程语言 > 分治法java

分治法java

发布时间:2024-03-24 19:07:01

A. 简述分治法的基本思想

分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。它的一般的算法设计模式如下:
divide-and-conquer(P)
{
if(|P|<=n0)
adhoc(P);
divide
P
into
smaller
subinstances
P1,P2,...,Pk;
for(i=1;i<=k;i++)
yi=divide-and-conquer(Pi);
return
merge(y1,...,yk);
}
其中,|P|表示问题P的规模。n0为一阀值,表示当问题P的规模不超过n0时,问题已容易解出,不必再继续分解。adhoc(P)是该分治法中的基本子算法,用于直接解小规模的问题P。当P的规模不超过n0时,直接算法adhoc(P)求解。算法merge(y1,y2,...,yk)是该分治法中的合并子算法,用于将P的子问题P1,P2,...,Pk的解y1,y2,...,yk合并为P的解。
根据分治法的分割原则,应把原问题分为多少个子问题才比较适宜?每个子问题是否规模相同或怎样才为适当?这些问题很难给予肯定的回答。但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。许多问题可以取k=2。这种使子问题规模大致相等的做法是出自一种平衡(banlancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。
从分治法的一般设计模式可以看出,用它设计出的算法一般是递归算法。因此,分治法的计算效率通常可以用递归方程来进行分析。一个分治法将规模为n的问题分成m个规模为n/m的子问题,其中k(k<=m)个子问题需要求解。为方便起见,设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。另外再设将原问题分解为k个问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。如果用T(n)表示该分治法divide-and-conquer(P)解规模为|P|=n的问题所需的计算时间,则有:
http://image211.poco.cn/mypoco/myphoto/20090409/00/_002.jpg
下面来讨论如何解这个与分治法有密切关系的递归方程。通常可以用展开递归式的方法来解这类递归方程,反复代入求解得:
http://image211.poco.cn/mypoco/myphoto/20090409/00/_001.jpg
注意,递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果T(n)足够平滑,由n等于m的方幂时T(n)的值估计T(n)的增长速度。通常,可以假定T(n)单调上升。
另一个需要注意的问题是,在分析分治法的计算效率是,通常得到的是递归不等式:
http://image211.poco.cn/mypoco/myphoto/20090409/00/_000.jpg
在讨论最坏情况下的计算时间复杂度,用等号(=)还是用小于等于号(<=)是没有本质区别的。

B. java快速排序简单代码

.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px} 排序算法是《数据结构与算法》中最基本的算法之一。排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。以下是快速排序算法:

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏誉渣宏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序梁灶通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒庆册泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n?),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是 O(n?),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。
1. 算法步骤
从数列中挑出一个元素,称为 "基准"(pivot);

重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
2. 动图演示
代码实现 JavaScript 实例 function quickSort ( arr , left , right ) {
    var len = arr. length ,
        partitionIndex ,
        left = typeof left != 'number' ? 0 : left ,
        right = typeof right != 'number' ? len - 1 : right ;

    if ( left

C. 用Java采用分治法递归求最大值和最小值,产生死循环

DEBUG了一下才看出来,递归坑人啊。。。
也建议你用DEBUG跟踪一下。。
首先这里递归了几次
float rmax = 0, rmin = 0, bmax = 0, bmin = 0;
mid = (i + j) / 2;
maxMin(i, mid, a, rmax, rmin);
当i=0,mid=1的时候,上面几行代码的最后一行执行完成,并输出了最大最小值。
之后这个一行执行完了继续往下执行,造成死循环
即i=2,j=1

D. 分治法求x的n次方的JAVA程序

计算X的n次方

public static int power(int x, int n)
{
int y = 0;

if (n == 0)

y = 1;

else

{
y = power(x , n/2); //递归

y = y * y;

if (y % 2 == 1)

y = y * x;

}
return y;

}

E. java实现几种常见排序算法

下面给你介绍四种常用排序算法:

1、冒泡排序

特点:效率低,实现简单

思想(从小到大排):每一趟将待排序序列中最大元素移到最后,剩下的为新的待排序序列,重复上述步骤直到排完所有元素。这只是冒泡排序的一种,当然也可以从后往前排。

F. java十大算法

算法一:快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

算法步骤:

1 从数列中挑出一个元素,称为 "基准"(pivot),

2 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。

3 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

算法二:堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

堆排序的平均时间复杂度为Ο(nlogn) 。

算法步骤:

创建一个堆H[0..n-1]

把堆首(最大值)和堆尾互换

3. 把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置

4. 重复步骤2,直到堆的尺寸为1

算法三:归并排序
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

算法步骤:

1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置

3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

4. 重复步骤3直到某一指针达到序列尾

5. 将另一序列剩下的所有元素

G. 如何理解java数据结构中的快速排序方法

原理:

快速排序也是分治法思想的一种实现,他的思路是使数组中的每个元素与基准值(Pivot,通常是数组的首个值,A[0])比较,数组中比基准值小的放在基准值的左边,形成左部;大的放在右边,形成右部;接下来将左部和右部分别递归地执行上面的过程:选基准值,小的放在左边,大的放在右边。。。直到排序结束。

步骤:

1.找基准值,设Pivot = a[0]

2.分区(Partition):比基准值小的放左边,大的放右边,基准值(Pivot)放左部与右部的之间。

3.进行左部(a[0] - a[pivot-1])的递归,以及右部(a[pivot+1] - a[n-1])的递归,重复上述步骤。

排序效果:

阅读全文

与分治法java相关的资料

热点内容
火狐app拦截窗口如何解除 浏览:900
javaapichm下载 浏览:160
如何用代理服务器玩cf 浏览:997
java对象转jsonobject 浏览:368
怎么删除app里的更新提示 浏览:420
日月单片机 浏览:150
airports在安卓上如何查看电量 浏览:250
北京回收全新服务器硬盘云主机 浏览:515
php空间搭建ss 浏览:504
phparray转string 浏览:671
powermill编程培训班 浏览:491
pdf与word文档区别 浏览:59
MC你如何将材质包装进服务器 浏览:701
单片机的外文资料 浏览:547
什么是白盒加密算法 浏览:804
乐书pdf 浏览:427
a星寻路算法在3d中 浏览:137
抗震等级不同箍筋加密区范围不同 浏览:471
xshell上传文件命令 浏览:781
优先级队列java 浏览:156