Ⅰ 作为一个小白,python应该怎样从零到入门
分享Python学习路线。
第一阶段Python基础与Linux数据库。这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段。你需要掌握Python基本语法规则及变量、逻辑控制、内置数据结构、文件操作、高级函数、模块、常用标准库模块、函数、异常处理、MySQL使用、协程等知识点。
学习目标:掌握Python基础语法,具备基础的编程能力;掌握Linux基本操作命令,掌握MySQL进阶内容,完成银行自动提款机系统实战、英汉词典、歌词解析器等项目。
第二阶段WEB全栈。这一部分主要学习Web前端相关技术,你需要掌握HTML、CSS、JavaScript、jQuery、BootStrap、Web开发基础、VUE、Flask Views、Flask模板、 数据库操作、Flask配置等知识。
学习目标:掌握WEB前端技术内容,掌握WEB后端框架,熟练使用Flask、Tornado、Django,可以完成数据监控后台的项目。
第三阶段数据分析+人工智能。这部分主要是学习爬虫相关的知识点,你需要掌握数据抓取、数据提取、数据存储、爬虫并发、动态网页抓取、scrapy框架、分布式爬虫、爬虫攻防、数据结构、算法等知识。
学习目标:可以掌握爬虫、数据采集,数据机构与算法进阶和人工智能技术。可以完成爬虫攻防、图片马赛克、电影推荐系统、地震预测、人工智能项目等阶段项目。
第四阶段高级进阶。这是Python高级知识点,你需要学习项目开发流程、部署、高并发、性能调优、Go语言基础、区块链入门等内容。
学习目标:可以掌握自动化运维与区块链开发技术,可以完成自动化运维项目、区块链等项目。
按照上面的Python学习路线图学习完后,你基本上就可以成为一名合格的Python开发工程师。当然,想要快速成为企业竞聘的精英人才,你需要有好的老师指导,还要有较多的项目积累实战经验。
Ⅱ python调试程序BUG的心得技巧分享
【导读】相信各位Python工程师们在写Python代码的时候,免不了经常会出现bug满天飞这种情况,这个时候我们可能就得一个标点一个标点的去排查,费时又费力,但是,我们又很难发现到底是其中的哪一个步骤,导致了这些问题的出现。导致这些问题的其中一个原因,就是我们没有养成良好的编程习惯。编程习惯就好比是电影中的特效。电影特效越好,呈现出来的观影效果也自然越好。同样,如果我们能够养成好的编程习惯,在查找错误的时候,自己的思路就会更加清晰。下面是小编整理的解决Python项目bug的心得技巧分享,包含六小点,希望对大家有所帮助。
方法一:使用项目管理工具
无论Python项目简单与否,我们都应该使用Git进行版本控制。大部分支持Python的IDE(集成开发环境)都内置了对Git这一类项目管理工具的支持。
我们在修改代码时,常常会出现改着改着程序就崩了的情况,改出的最新版本有时候还不如上一个版本。而Git,恰好能够及时帮我们保存之前的版本。使用了它以后,我们也不需要不停地用“ctrl+z”来撤回代码了。
方法二:使用Python的内置函数
Python的内置函数和标准库都可以处理常见的用例,而不需要自己重新定义函数。
但是,刚刚入门的Python开发人员们对其中的函数并不熟悉。所以他们经常会遇到这样一个问题——在不需要记住内容的情况下,如何才能知道标准库中的内容是否涵盖了自己的用例?最简单的方法是将标准库索引和内置函数概述页添加为书签,并且在遇到“日常编程”类问题的时候立即浏览一下。我们使用这些函数的频率高了,自然也就能记住这些函数了。
方法三:使用正确的模块
与内置函数和标准库一样,Python中大量的第三方模块集合,也可以帮助我们节省大量的人力。通过PyPI的Web前端,可以针对我们的问题触发搜索词,我们很容易就能找到适合自己的解决方案。
方法四:使用OOP
面向对象编程(OOP)将数据结构与用于操作它们的方法捆绑在一起,从而使编写高级代码更加容易。OOP非常适合用于Python这一类高级语言,尤其是项目非常复杂的时候。熟悉Python的开发人员都知道,使用OOP可以减少代码量,从而节省大量的时间。
但是,也不是所有的项目都需要使用OOP。如果项目没有特别要求,一些小型的项目就可以不用OOP。
方法五:编写测试代码并不断测试
一个好的程序员一定知道测试之于项目的重要性。编写测试代码的确是一个很枯燥的过程,但是不进行测试,我们就无法发现程序的问题所在。
如果一个项目非常复杂的话,我们就必须要做到及时测试。越早测试,就能越早发现问题。而不是说等代码全部写完了,才开始进行测试,这样反而会导致更多的错误和更大的工作量。
当然,我们也可以寻找专业的软件测试人员,来帮助我们进行测试。这样我们也可以把更多的精力投入到项目程序本身。
方法六:选择正确的Python版本
部分人仍然在使用Python2,但Python官方的开发团队早已经不对这一版本进行维护了。聪明的开发人员都已经将Python2里的项目迁移到Python3中了。
Python目前的最新版本是Python3.8.5,但也不是说你一定要使用最新版本。专业的软件开发人员都知道,任何软件的最新版本都不一定是最好的,因为它仍需要开发团队不断地去改良。程序员一般都会使用在最新版本之前的一个版本,旧版本相对而言是比较成熟的。
无论是运用哪一种语言编写代码,优秀的程序员都具备良好的编程习惯。这些习惯不仅能够让我们思路更加清晰,也可以帮助我们减轻工作量,从而节省大量的时间。所以,可能你离优秀的程序员,只差一个好习惯了哦~
以上就是小编今天给大家整理发送的关于“解决Python项目BUG的心得技巧分享”的相关内容,希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
Ⅲ 如何编写高质量的python程序
写出规范的代码是写出高质量代码的第一步,并且有助于培养仔细的习惯。
为了培养规范写代码的习惯,可以安装flake8这个工具,它不仅可以检查代码风格是否符合官方建议(PEP8),而且还能找出潜在的隐患(用Pyflakes做语法分析),更逆天的是还能检测到你有些函数写的太复杂(代码圈复杂度)了,更更逆天的是可以设置git commit之前必须通过这些检查。
当然具体操作需要根据自己的项目进行一些定制,比如可以忽略E501,W293。
空白项目模版
好的开始是成功的一半,写python代码就从pyempty开始吧。
在github上看一下那些经典的项目,web.py,flask, pep8,他们的项目目录都很规范,综合借鉴了一些项目的特点,我写了这个pyempty项目。
1.README.md 这里写你项目的简介,quick start等信息,虽然distutils要求这个文件没有后缀名,但github上如果后缀是.md的话可以直接转换成html显示。
2.ChangeLog.txt 该文件存放程序各版本的变更信息,也有一定的格式,参考web.py的ChangeLog.txt
3.LICENES.txt 这里存放你项目使用的协议,不要编写自己的协议。
4.requirements.txt 如果你的项目需要依赖其它的python第三方库,在这里一行一个写出来,可能pip install的时候能自动帮你安装
5.setup.py 安装脚本,后面详细介绍
6.docs 里面存放你的项目文档,如概要设计,详细设计,维护文档,pydoc自动生成的文档等,强烈推荐大家使用MarkDown格式编写文档
7.src 这个目录里存放项目模块的主要代码,尽量不要把模块目录直接放到根目录,模块代码目录可以在setup.py里指定的
8.tests 这个目录存放所有单元测试,性能测试脚本,单元测试的文件确保以test_做前缀,这样distutils会自动打包这些文件,并且用python -m unittest discover -s ./ -p 'test_*.py' -v 可以直接执行这些测试
单元测试
Martin Fowler:"在你不知道如何测试代码之前,就不该编写程序。而一旦你完成了程序,测试代码也应该完成。除非测试成功,你不能认为你编写出了可以工作的程序。"
我们有很多理由不写单元测试,归根结底是懒,虽然代码大全上说:
大部分研究都发现,检测比测试的成本更小。NASA软件工程实验室的一项研究发现,阅读代码每小时能够检测出来的缺陷要比测试高出80%左右(Basili and Selby 1987)。后来,IBM的一项研究又发现,检查发现的一个错误只需要3.5个工作时,而测试则需要花费15-25个工作时(Kaplan 1995)。
但是单元测试还是让别人相信你的代码有很高质量的最有力证据。
好了,请详细阅读:
深入python3.0: 单元测试-2.x也适用
Unit testing framework 不完整中文版
文档
敏捷开发不是提倡什么文档也不写,没有文档就没有传承和积累,轮岗或新人接手任务就会遇到很大的麻烦,所以我决定每个项目最少要写以下文档:
1.nalysis.model.md 概要设计文档,不同于README.md文件,该文档应该写于项目开发之前,把项目有哪些功能,大概分几个模块等项目整体概述信息写一下。
2.design.model.md 详细设计文档,不用太详细,至少把项目依赖哪些东西,谁依赖这个项目,重要算法流程描述,代码整体结构等写出来。
3.maintain.md 维护文档,这个我觉得最重要,你的服务都记录哪些日志,需要监控哪些业务指标,如何重启,有哪些配置项等,没这些东西,你的项目很难运维。
上面这些文档都是项目全局性的文档,不适合写在docstring或注视里,所以要有单独的文档。
打包
python有专门的模块打包系统distutils,你可以用这套机制把你的代码打包并分发到Pypi上,这样任何人都可以用pip或easy_install安装你的模块。
如果你开发的是内部项目,还可以用mypypi架设私有的pypi,然后把项目的大的版本更新发布到内部的pypi上,配置管理人员和运维人员可以很方便的从pypi上拉取代码安装到测试环境或生产环境。
发布大版本的时候要给版本命名及编写ChangeList,可以参考Git Pro的相关章节,主要记住以下几个命令。
git tag -a v0.1 -m 'my test tag' #给大版本命名,打Tag
git describe master #给小版本命名,Git将会返回一个字符串,由三部分组成:最近一次标定的版本号,加上自那次标定之后的提交次数,再加上一段SHA-1值
git shortlog --no-merges master --not v0.1 #生成版本简报,ChangeList
python有自己的打包机制,所以一般不要用git archive命令。
当然大版本管理用pypi管理比较合适,小的bug fix,紧急上线等好多公司都是用git直接从生产环境拉代码更新,因为git,svn等可以很方便的撤销某次更新,回滚到某个位置。
如何管理好大版本上线和小的紧急上线,我还没理清思路,欢迎大家参与讨论。
关于打包,请阅读如下链接:
Python 打包指南
深入Python3.0:打包 Python 类库
python打包:分发指定文件
出自:http://developer.51cto.com/art/201209/356603.htm
Ⅳ python脚本思路请教
f=open('文本')
data=f.readlines()
for i in data:
ip=i.split()[0]#获取ip,具体方法看ip在文本的设置
result=os.popen("ping %s"%i)
#判断结果
ping通的话再执行telnet测试
不通输出ip即可并写入到log
2跟一差不多。本机操作的话就os.popen,远程操作系统并执行命令的话通过paramiko也可以实现,具体方法都是基本的try except,自己尝试下即可
Ⅳ 新手如何快速入门Python编程
了解 Python 编程基础
首先第一点,要能够看懂了解变量、基础语法、编程规范等,这些事能够上手编写Python 代码的前提。
其次第二点,对于数据结构,字符串、列表、字典等需要比较熟练运用。
刚开始的这部分就做一些简单的练习,构造出一个数据类型,然后再实现基本的用法。比如你自己构造一个列表,实现列表中数据的访问、更新、删除等基本操作,比如len()、max()、min() 函数,以及 append()、count()、extend() 等方法。
Python函数及流程控制
有了前面的基础练习之后,学习Python的函数和控制语句,是真正去解决问题的过程,如何将固定的功能模块封装成函数,如何实现判断和循坏,这些不仅是写出代码的必要条件,也是训练编程思维的必经之路。
流程控制比较好掌握一些,条件语句和循坏语句在不同的场景下练习几遍,知道判断和循环实现的过程就行。
函数这个部分无外乎函数的定义、函数调用以及参数传递,但是要能够熟练地写出函数实现对应的功能,需要注意的细节很多。
利用Python做些事情
在前期的理论知识学透之后,你不妨尝试着利用利用Python做些事情,检验自己的学习成果,这样也能够巩固加深自己学习的理论知识。同时,可以查漏补缺,看看自己哪方面需要保持,哪方面需要继续学习。
这个时候不妨了解一些第三方库,你可以做更多的事情。对于不同的库,内部的方法、函数你还需要去熟悉,开始的时候先掌握少部分最常用的方法,在遇到实际的问题的时候,再去查对应的更多的用法,这样会更高效。
深入Python编程
首先需要了解Python的高级特性,如迭代器、生成器、装饰器等,了解类和面向对象的理念。深入下去,你可以去探索Python的实现原理,Python的性能优化,跳出Python语言本身,去了解计算机的交互原理,还有很长的路要走,但并不是每一个人都需要这个过程。
但这些确实是你在这个领域立足生根的重要条件,对于特别想要在IT行业发展的人来说,这个过程是非常有必要的。
以上就是关于如何快速入门Python编程的内容,希望可以为您提供一些帮助。如果您还想了解更多关于数据分析师、大数据工程师、Python编程素材及方法等内容,可以点击本站的其他文章进行学习。
Ⅵ 如何快速学习Python
一、Python是一种计算机程序设计语言。
你可能已经听说过很多种流行的编程语言,比如非常难学的C语言,非常流行的Java语言,适合初学者的Basic语言,适合网页编程的JavaScript语言等等。
二、那Python是一种什么语言?
首先,我们普及一下编程语言的基础知识。用任何编程语言来开发程序,都是为了让计算机干活,比如下载一个MP3,编写一个文档等等,而计算机干活的CPU只认识机器指令,所以,尽管不同的编程语言差异极大,最后都得“翻译”成CPU可以执行的机器指令。而不同的编程语言,编写的代码量,差距也很大。
比如,完成同一个任务,C语言要写1000行代码,Java只需要写100行,而Python可能只要20行。
三、所以Python是一种相当高级的语言。
1、你也许会问,代码少还不好?代码少的代价是运行速度慢,C程序运行1秒钟,Java程序可能需要2秒,而Python程序可能就需要10秒。
2、那是不是越低级的程序越难学,越高级的程序越简单?表面上来说,是的,但是,在非常高的抽象计算中,高级的Python程序设计也是非常难学的,所以,高级程序语言不等于简单。
3、但是,对于初学者和完成普通任务,Python语言是非常简单易用的。连Google都在大规模使用Python,你就不用担心学了会没用。
4、用Python可以做什么?可以做日常任务,比如自动备份你的MP3;可以做网站,很多着名的网站包括YouTube就是Python写的;可以做网络游戏的后台,很多在线游戏的后台都是Python开发的。总之就是能干很多很多事啦。
5、Python当然也有不能干的事情,比如写操作系统,这个只能用C语言写;写手机应用,只能用Swift/Objective-C(针对iPhone)和Java(针对Android);写3D游戏,最好用C或C++。
四、如果你是小白用户,满足以下条件:
会使用电脑,但从来没写过程序;
还记得初中数学学的方程式和一点点代数知识;
想从编程小白变成专业的软件架构师;
每天能抽出半个小时学习,不要再犹豫了,这个教程就是为你准备的!准备好了吗?