导航:首页 > 编程语言 > python神经网络限制优化

python神经网络限制优化

发布时间:2024-04-10 09:39:28

㈠ 从零开始用python构建神经网络

从零开始用Python构建神经网络
动机:为了更加深入的理解深度学习,我们将使用 python 语言从头搭建一个神经网络,而不是使用像 Tensorflow 那样的封装好的框架。我认为理解神经网络的内部工作原理,对数据科学家来说至关重要。
这篇文章的内容是我的所学,希望也能对你有所帮助。
神经网络是什么?
介绍神经网络的文章大多数都会将它和大脑进行类比。如果你没有深入研究过大脑与神经网络的类比,那么将神经网络解释为一种将给定输入映射为期望输出的数学关系会更容易理解。
神经网络包括以下组成部分
? 一个输入层,x
? 任意数量的隐藏层
? 一个输出层,?
? 每层之间有一组权值和偏置,W and b
? 为隐藏层选择一种激活函数,σ。在教程中我们使用 Sigmoid 激活函数
下图展示了 2 层神经网络的结构(注意:我们在计算网络层数时通常排除输入层)

2 层神经网络的结构
用 Python 可以很容易的构建神经网络类

训练神经网络
这个网络的输出 ? 为:

你可能会注意到,在上面的等式中,输出 ? 是 W 和 b 函数。
因此 W 和 b 的值影响预测的准确率. 所以根据输入数据对 W 和 b 调优的过程就被成为训练神经网络。
每步训练迭代包含以下两个部分:
? 计算预测结果 ?,这一步称为前向传播
? 更新 W 和 b,,这一步成为反向传播
下面的顺序图展示了这个过程:

前向传播
正如我们在上图中看到的,前向传播只是简单的计算。对于一个基本的 2 层网络来说,它的输出是这样的:

我们在 NeuralNetwork 类中增加一个计算前向传播的函数。为了简单起见我们假设偏置 b 为0:

但是我们还需要一个方法来评估预测结果的好坏(即预测值和真实值的误差)。这就要用到损失函数。
损失函数
常用的损失函数有很多种,根据模型的需求来选择。在本教程中,我们使用误差平方和作为损失函数。
误差平方和是求每个预测值和真实值之间的误差再求和,这个误差是他们的差值求平方以便我们观察误差的绝对值。
训练的目标是找到一组 W 和 b,使得损失函数最好小,也即预测值和真实值之间的距离最小。
反向传播
我们已经度量出了预测的误差(损失),现在需要找到一种方法来传播误差,并以此更新权值和偏置。
为了知道如何适当的调整权值和偏置,我们需要知道损失函数对权值 W 和偏置 b 的导数。
回想微积分中的概念,函数的导数就是函数的斜率。

梯度下降法
如果我们已经求出了导数,我们就可以通过增加或减少导数值来更新权值 W 和偏置 b(参考上图)。这种方式被称为梯度下降法。
但是我们不能直接计算损失函数对权值和偏置的导数,因为在损失函数的等式中并没有显式的包含他们。因此,我们需要运用链式求导发在来帮助计算导数。

链式法则用于计算损失函数对 W 和 b 的导数。注意,为了简单起见。我们只展示了假设网络只有 1 层的偏导数。
这虽然很简陋,但是我们依然能得到想要的结果—损失函数对权值 W 的导数(斜率),因此我们可以相应的调整权值。
现在我们将反向传播算法的函数添加到 Python 代码中

为了更深入的理解微积分原理和反向传播中的链式求导法则,我强烈推荐 3Blue1Brown 的如下教程:
Youtube:https://youtu.be/tIeHLnjs5U8
整合并完成一个实例
既然我们已经有了包括前向传播和反向传播的完整 Python 代码,那么就将其应用到一个例子上看看它是如何工作的吧。

神经网络可以通过学习得到函数的权重。而我们仅靠观察是不太可能得到函数的权重的。
让我们训练神经网络进行 1500 次迭代,看看会发生什么。 注意观察下面每次迭代的损失函数,我们可以清楚地看到损失函数单调递减到最小值。这与我们之前介绍的梯度下降法一致。

让我们看看经过 1500 次迭代后的神经网络的最终预测结果:

经过 1500 次迭代训练后的预测结果
我们成功了!我们应用前向和方向传播算法成功的训练了神经网络并且预测结果收敛于真实值。
注意预测值和真实值之间存在细微的误差是允许的。这样可以防止模型过拟合并且使得神经网络对于未知数据有着更强的泛化能力。
下一步是什么?
幸运的是我们的学习之旅还没有结束,仍然有很多关于神经网络和深度学习的内容需要学习。例如:
? 除了 Sigmoid 以外,还可以用哪些激活函数
? 在训练网络的时候应用学习率
? 在面对图像分类任务的时候使用卷积神经网络
我很快会写更多关于这个主题的内容,敬请期待!
最后的想法
我自己也从零开始写了很多神经网络的代码
虽然可以使用诸如 Tensorflow 和 Keras 这样的深度学习框架方便的搭建深层网络而不需要完全理解其内部工作原理。但是我觉得对于有追求的数据科学家来说,理解内部原理是非常有益的。
这种练习对我自己来说已成成为重要的时间投入,希望也能对你有所帮助

㈡ 关于神经网络 需要学习python的哪些知识

多读文档 应该是库 库也是python基础编写的 多读多看

㈢ BP神经网络——Python简单实现三层神经网络(Numpy)

我们将在Python中创建一个NeuralNetwork类,以训练神经元以给出准确的预测。该课程还将具有其他帮助程序功能。

1. 应用Sigmoid函数
我们将使用 Sigmoid函数 (它绘制一条“ S”形曲线)作为神经网络的激活函数。

2. 训练模型
这是我们将教神经网络做出准确预测的阶段。每个输入将具有权重(正或负)。
这意味着具有大量正权重或大量负权重的输入将对结果输出产生更大的影响。

我们最初是将每个权重分配给一个随机数。

本文参考翻译于此网站 —— 原文

㈣ 神经网络中自适应的梯度下降优化算法(二)

Adagrad算法可以针对不同的参数自适应的采用不同的更新频率,对低频出现的特征采用低的更新率,对高频出现的特征采用高的更新率,因此,对于稀疏的数据它表现的很好,很好的提升了SGD的鲁棒性,在Google的通过Youtube视频识别猫的神经网络训练中有很好的表现。

梯度更新规则:

g(t,i)表示在t时刻目标函数对θ(i)的偏导数。SGD的每个参数的更新过程如下:

Adagrad的每个参数更新过程如下:

G(t)是一个对角矩阵,对角线上的每个元素是t时刻前所有θ(i)的梯度的平方和。ε通常取值在1e-8量级,它的存在是为了避免除数为0。一个有趣的现象是,如果没有平方根操作,算法的表现就非常糟糕。

Adagrad的主要缺点是,它的分母是平方梯度的累积,它的值会一直增加,最终导致学习率衰减到非常小,从而使得学习算法无法进行下去。

TensorFlow实现:

tf.train.AdagradOptimizer(learning_rate, initial_accumulator_value=0.1, use_locking=False, name='Adagrad')

Adadelta算法主要解决Adagrad的缺陷,它不再累加过去所有的梯度,而是仅累积过去固定个数的梯度。

Adadelta不是采用平方梯度的简单累加,而是采用 历史 平方梯度的衰减的平均。

γ通常等于0.9

分母相当于梯度的均方根(root mean squared, RMS),即将所有值平方求和,求其均值,再开平方,就得到均方根值。

梯度更新规则:

将学习率η设置为

,我们就不需要提前设定学习率。

RMSprop是Geoff Hinton提出的一种自适应学习率的方法,它与Adadelta方法都是为了解决Adagrad学习率急剧下降问题的。它与Adadelta方法是一致的。

梯度更新规则

超参数设定值:

Hinton建议设定γ=0.9, 学习率η=0.001。

TensorFlow实现:

tf.train.RMSPropOptimizer.__init__(learning_rate, decay, momentum=0.0, epsilon=1e-10, use_locking=False, name='RMSProp')

Adam也是对不同的参数自适应设置不同的学习率。它对 历史 梯度和 历史 平方梯度同时采用指数梯度衰减(exponentially decaying average)。

梯度更新规则

Adam作者观察到,如果m(t)和v(t)初始化为零向量,并且衰减率很小时(比如β1和β2都非常接近于1时),在开始的迭代中,m(t)和v(t)总是向零偏移,所以需要做偏移校正。

然后用校正后的值进行梯度更新:

Adam作者建议β1=0.9,β2=0.999,ε=10^{-8}

,在实践中,Adam比其它算法的效果要好。

TensorFlow实现:

tf.train.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')

Adam更新规则中的梯度缩放与 历史 梯度的L2范数成反比。

我们可以把这个规则泛化到Lp范数。

当p值增大的时候,Lp的值往往会变得不稳定,所以在实践中L1和L2使用的比较普遍。但是Adamax作者发现L∞可以收敛到一个稳定值。

然后我们可以采用u(t)代替

来更新Adam中的梯度。

同时u(t)不需要做零偏校正。默认取值建议:

㈤ 如何用python和scikit learn实现神经网络

1:神经网络算法简介

2:Backpropagation算法详细介绍

3:非线性转化方程举例

4:自己实现神经网络算法NeuralNetwork

5:基于NeuralNetwork的XOR实例

6:基于NeuralNetwork的手写数字识别实例

7:scikit-learn中BernoulliRBM使用实例

8:scikit-learn中的手写数字识别实例

一:神经网络算法简介

1:背景

以人脑神经网络为启发,历史上出现过很多版本,但最着名的是backpropagation

2:多层向前神经网络(Multilayer Feed-Forward Neural Network)

㈥ Hopfield神经网络用python实现讲解

神经网络结构具有以下三个特点:

神经元之间全连接,并且为单层神经网络。

每个神经元既是输入又是输出,导致得到的权重矩阵相对称,故可节约计算量。

在输入的激励下,其输出会产生不断的状态变化,这个反馈过程会一直反复进行。假如Hopfield神经网络是一个收敛的稳定网络,则这个反馈与迭代的计算过程所产生的变化越来越小,一旦达到了稳定的平衡状态,Hopfield网络就会输出一个稳定的恒值。

Hopfield网络可以储存一组平衡点,使得当给定网络一组初始状态时,网络通过自行运行而最终收敛于这个设计的平衡点上。当然,根据热力学上,平衡状态分为stable state和metastable state, 这两种状态在网络的收敛过程中都是非常可能的。

为递归型网络,t时刻的状态与t-1时刻的输出状态有关。之后的神经元更新过程也采用的是异步更新法(Asynchronous)。

Hopfield神经网络用python实现

㈦ 如何用9行Python代码编写一个简易神经网络

学习人工智能时,我给自己定了一个目标--用Python写一个简单的神经网络。为了确保真得理解它,我要求自己不使用任何神经网络库,从头写起。多亏了Andrew Trask写得一篇精彩的博客,我做到了!下面贴出那九行代码:在这篇文章中,我将解释我是如何做得,以便你可以写出你自己的。我将会提供一个长点的但是更完美的源代码。

首先,神经网络是什么?人脑由几千亿由突触相互连接的细胞(神经元)组成。突触传入足够的兴奋就会引起神经元的兴奋。这个过程被称为“思考”。我们可以在计算机上写一个神经网络来模拟这个过程。不需要在生物分子水平模拟人脑,只需模拟更高层级的规则。我们使用矩阵(二维数据表格)这一数学工具,并且为了简单明了,只模拟一个有3个输入和一个输出的神经元。

我们将训练神经元解决下面的问题。前四个例子被称作训练集。你发现规律了吗?‘?’是0还是1?你可能发现了,输出总是等于输入中最左列的值。所以‘?’应该是1。

训练过程

但是如何使我们的神经元回答正确呢?赋予每个输入一个权重,可以是一个正的或负的数字。拥有较大正(或负)权重的输入将决定神经元的输出。首先设置每个权重的初始值为一个随机数字,然后开始训练过程:

取一个训练样本的输入,使用权重调整它们,通过一个特殊的公式计算神经元的输出。

计算误差,即神经元的输出与训练样本中的期待输出之间的差值。

根据误差略微地调整权重。

重复这个过程1万次。最终权重将会变为符合训练集的一个最优解。如果使用神经元考虑这种规律的一个新情形,它将会给出一个很棒的预测。

这个过程就是back propagation。

计算神经元输出的公式

你可能会想,计算神经元输出的公式是什么?首先,计算神经元输入的加权和,即接着使之规范化,结果在0,1之间。为此使用一个数学函数--Sigmoid函数:Sigmoid函数的图形是一条“S”状的曲线。把第一个方程代入第二个,计算神经元输出的最终公式为:你可能注意到了,为了简单,我们没有引入最低兴奋阈值。

调整权重的公式

我们在训练时不断调整权重。但是怎么调整呢?可以使用“Error Weighted Derivative”公式:为什么使用这个公式?首先,我们想使调整和误差的大小成比例。其次,乘以输入(0或1),如果输入是0,权重就不会调整。最后,乘以Sigmoid曲线的斜率(图4)。为了理解最后一条,考虑这些:

我们使用Sigmoid曲线计算神经元的输出

如果输出是一个大的正(或负)数,这意味着神经元采用这种(或另一种)方式

从图四可以看出,在较大数值处,Sigmoid曲线斜率小

如果神经元认为当前权重是正确的,就不会对它进行很大调整。乘以Sigmoid曲线斜率便可以实现这一点

Sigmoid曲线的斜率可以通过求导得到:把第二个等式代入第一个等式里,得到调整权重的最终公式:当然有其他公式,它们可以使神经元学习得更快,但是这个公式的优点是非常简单。

构造Python代码

虽然我们没有使用神经网络库,但是将导入Python数学库numpy里的4个方法。分别是:

exp--自然指数

array--创建矩阵

dot--进行矩阵乘法

random--产生随机数

比如, 我们可以使用array()方法表示前面展示的训练集:“.T”方法用于矩阵转置(行变列)。所以,计算机这样存储数字:我觉得我们可以开始构建更优美的源代码了。给出这个源代码后,我会做一个总结。

我对每一行源代码都添加了注释来解释所有内容。注意在每次迭代时,我们同时处理所有训练集数据。所以变量都是矩阵(二维数据表格)。下面是一个用Python写地完整的示例代码。

我们做到了!我们用Python构建了一个简单的神经网络!

首先神经网络对自己赋予随机权重,然后使用训练集训练自己。接着,它考虑一种新的情形[1, 0, 0]并且预测了0.99993704。正确答案是1。非常接近!

传统计算机程序通常不会学习。而神经网络却能自己学习,适应并对新情形做出反应,这是多么神奇,就像人类一样。

阅读全文

与python神经网络限制优化相关的资料

热点内容
绍兴程序员接私活攻略 浏览:640
java获取上传图片 浏览:46
主次梁交叉处箍筋加密长度 浏览:961
快递时效的算法 浏览:583
菜谱大全pdf 浏览:315
怎么在风云pdf上把文件夹汇总 浏览:878
java创建子类 浏览:531
安卓实况怎么退出渠道服登录 浏览:106
汽车12v电压缩机 浏览:417
乐图java 浏览:788
命令与征服注册表 浏览:323
听课app如何保存下来视频 浏览:450
phpiconv支持 浏览:92
什么app可以借到钱 浏览:16
单片机中rn是什么元件缩写 浏览:836
office插件pdf 浏览:187
上古卷轴dat1放哪个文件夹 浏览:775
文件夹左下角脱机状态 浏览:96
手机贴吧app哪个好 浏览:583
java文件读取中文乱码 浏览:515