❶ 怎么样python爬虫进行此网站爬取
是加密的,解密方法在JS里面可以弄出来。
首先要AES解密,可以【Python:import Crypto.Cipher.AES】包,解密mode是CFB,seed是"userId:"+uid+":seed"的SHA256值,解密的key是seed[0:24],iv是seed[len(seed)-16:]。
如果没有登录,uid就是用的"anyone",这时候的seed是"",也就是key为"61581AF471B166682A37EFE6",iv为"C8F203FCA312AAAB"。
解密后文件是压缩过的,解压即可得到一个JSON。这部分解压我没仔细看他的算法,好像是gzip,直接用【Python:import gzip】解压有点出错,可能没用对或者不是这个算法,你在研究一下。第二种投机的方法就是,可以通过【Python:import execjs】直接调用他的pako.js文件的JS的inflate()函数来解压这块。JS代码混淆后看起来是非常难懂的,使用这种做法可以不用太看懂加密的算法,效率当然写Python实现这个解密算法低1点咯。
最后的JSON再用【Python:import demjson】解析,text的value就是文档。
❷ Python爬虫:想听榜单歌曲只需要14行代码即可搞定
虽然说XPath比正则表达式用起来方便,但是没有最方便,只有更方便。我们的BeautifulSoup库就能做到更方便的爬取想要的东西。
使用之前,还是老规矩,先安装BeautifulSoup库,指令如下:
其中文开发文档:
BeautifulSoup库是一个强大的Python语言的XML和HTML解析库。它提供了一些简单的函数来处理导航、搜索、修改分析树等功能。
BeautifulSoup库还能自动将输入的文档转换为Unicode编码,输出文档转换为UTF-8编码。
所以,在使用BeautifulSoup库的过程中,不需要开发中考虑编码的问题,除非你解析的文档,本身就没有指定编码方式,这才需要开发中进行编码处理。
下面,我们来详细介绍BeautifulSoup库的使用规则。
下面,我们来详细介绍BeautifulSoup库的重点知识。
首先,BeautifulSoup库中一个重要的概念就是选择解释器。因为其底层依赖的全是这些解释器,我们有必要认识一下。博主专门列出了一个表格:
从上面表格观察,我们一般爬虫使用lxml HTML解析器即可,不仅速度快,而且兼容性强大,只是需要安装C语言库这一个缺点(不能叫缺点,应该叫麻烦)。
要使用BeautifulSoup库,需要和其他库一样进行导入,但你虽然安装的是beautifulsoup4,但导入的名称并不是beautifulsoup4,而是bs4。用法如下:
运行之后,输出文本如下:
基础的用法很简单,这里不在赘述。从现在开始,我们来详细学习BeautifulSoup库的所有重要知识点,第一个就是节点选择器。
所谓节点选择器,就是直接通过节点的名称选择节点,然后再用string属性就可以得到节点内的文本,这种方式获取最快。
比如,基础用法中,我们使用h1直接获取了h1节点,然后通过h1.string即可得到它的文本。但这种用法有一个明显的缺点,就是层次复杂不适合。
所以,我们在使用节点选择器之前,需要将文档缩小。比如一个文档很多很大,但我们获取的内容只在id为blog的p中,那么我们先获取这个p,再在p内部使用节点选择器就非常合适了。
HTML示例代码:
下面的一些示例,我们还是使用这个HTML代码进行节点选择器的讲解。
这里,我们先来教会大家如何获取节点的名称属性以及内容,示例如下:
运行之后,效果如下:
一般来说一个节点的子节点有可能很多,通过上面的方式获取,只能得到第一个。如果要获取一个标签的所有子节点,这里有2种方式。先来看代码:
运行之后,效果如下:
如上面代码所示,我们有2种方式获取所有子节点,一种是通过contents属性,一种是通过children属性,2者遍历的结果都是一样的。
既然能获取直接子节点,那么获取所有子孙节点也是肯定可以的。BeautifulSoup库给我们提供了descendants属性获取子孙节点,示例如下:
运行之后,效果如下:
同样的,在实际的爬虫程序中,我们有时候也需要通过逆向查找父节点,或者查找兄弟节点。
BeautifulSoup库,给我们提供了parent属性获取父节点,同时提供了next_sibling属性获取当前节点的下一个兄弟节点,previous_sibling属性获取上一个兄弟节点。
示例代码如下:
运行之后,效果如下:
对于节点选择器,博主已经介绍了相对于文本内容较少的完全可以这么做。但实际的爬虫爬的网址都是大量的数据,开始使用节点选择器就不合适了。所以,我们要考虑通过方法选择器进行先一步的处理。
find_all()方法主要用于根据节点的名称、属性、文本内容等选择所有符合要求的节点。其完整的定义如下所示:
【实战】还是测试上面的HTML,我们获取name=a,attr={"class":"aaa"},并且文本等于text="Python板块"板块的节点。
示例代码如下所示:
运行之后,效果如下所示:
find()与find_all()仅差一个all,但结果却有2点不同:
1.find()只查找符合条件的第一个节点,而find_all()是查找符合条件的所有节点2.find()方法返回的是bs4.element.Tag对象,而find_all()返回的是bs4.element.ResultSet对象
下面,我们来查找上面HTML中的a标签,看看返回结果有何不同,示例如下:
运行之后,效果如下:
首先,我们来了解一下CSS选择器的规则:
1..classname:选取样式名为classname的节点,也就是class属性值是classname的节点2.#idname:选取id属性为idname的节点3.nodename:选取节点名为nodename的节点
一般来说,在BeautifulSoup库中,我们使用函数select()进行CSS选择器的操作。示例如下:
这里,我们选择class等于li1的节点。运行之后,效果如下:
因为,我们需要实现嵌套CSS选择器的用法,但上面的HTML不合适。这里,我们略作修改,仅仅更改
❸ python网络爬虫具体是怎样的
举一个例子来类比一下,在每日的新冠核酸排查时,发现了几个阳性人员(种子地址),这时候会对每个阳性人员接触的人员(地址内容)进行排查,对排查出的阳性人员再进行上面的接触人员排查,层层排查,直到排查出所有阳悉拦性人员。
python网络爬虫跟上面的例子很相似,
首先一批种子地址开始,将这些种子地址加入待处理的任务队列;任务处理者从上面的任务队列中取出一个地址,取出后需要将这个地址从任贺扰务队列中移除,同时还要加到已处理地址字典中去,访问地址获取数据;处理上面获取的数据,比如可能是一个网页,网页中又可能存在多个地址,比如一个页面中又很多链接地址,将这些地址如果不在已处理的地址字典的话,就加入到待处理的任务队列。同时提取获取到的数据中的有禅陆旦用部分存储下来;周而复始地执行上面2,3步操作,直到待处理地址队列处理完,或者获取了到了足够数量的数据等结束条件。最后对采集到的有用数据就可以进行清洗,转化处理,作为爬虫的最后数据输出。
❹ 如何用Python爬虫抓取网页内容
首先,你要安装requests和BeautifulSoup4,然后执行如下代码.
importrequests
frombs4importBeautifulSoup
iurl='http://news.sina.com.cn/c/nd/2017-08-03/doc-ifyitapp0128744.shtml'
res=requests.get(iurl)
res.encoding='utf-8'
#print(len(res.text))
soup=BeautifulSoup(res.text,'html.parser')
#标题
H1=soup.select('#artibodyTitle')[0].text
#来源
time_source=soup.select('.time-source')[0].text
#来源
origin=soup.select('#artibodyp')[0].text.strip()
#原标题
oriTitle=soup.select('#artibodyp')[1].text.strip()
#内容
raw_content=soup.select('#artibodyp')[2:19]
content=[]
forparagraphinraw_content:
content.append(paragraph.text.strip())
'@'.join(content)
#责任编辑
ae=soup.select('.article-editor')[0].text
这样就可以了
❺ python爬虫怎么做
❻ 如何利用python爬虫获取数据
python是一款应用非常广泛的脚本程序语言,谷歌公司的网页就是用python编写。python在生物信息、统计、网页制作、计算等多个领域都体现出了强大的功能。python和其他脚本语言如java、R、Perl一样,都可以直接在命令行里运行脚本程序。工具/原料python;CMD命令行;windows操作系统方法/步骤1、首先下载安装python,建议安装2.7版本以上,3.0版本以下,由于3.0版本以上不向下兼容,体验较差。2、打开文本编辑器,推荐editplus,notepad等,将文件保存成.py格式,editplus和notepad支持识别python语法。脚本第一行一定要写上#!usr/bin/python表示该脚本文件是可执行python脚本如果python目录不在usr/bin目录下,则替换成当前python执行程序的目录。3、编写完脚本之后注意调试、可以直接用editplus调试。调试方法可自行网络。脚本写完之后,打开CMD命令行,前提是python已经被加入到环境变量中,如果没有加入到环境变量,请网络4、在CMD命令行中,输入“python”+“空格”,即”python“;将已经写好的脚本文件拖拽到当前光标位置,然后敲回车运行即可。