导航:首页 > 编程语言 > 数控钻床g84攻牙编程

数控钻床g84攻牙编程

发布时间:2024-06-27 09:22:22

⑴ 快速入门数控加工中心编程的方法(2)

快速入门数控加工中心编程的方法

二、坐标系建立基础概念

1.刀位点

刀位点是刀具上的一个基准点,刀位点相对运动的轨迹即加工路线,也称编程轨迹。

2.对刀和对刀点

对刀是指操作员在启动数控程序之前,通过一定的测量手段,使刀位点与对刀点重合。可以用对刀仪对刀,其操作比较简单,测量数据也比较准确。还可以在数控机床上定位好夹具和安装好零件之后,使用量块、塞尺、千分表等,利用数控机床上的坐标对刀。对于操作者来说,确定对刀点将是非常重要的,会直接影响零件的加工精度和程序控制的准确性。在批生产过程中,更要考虑到对刀点的重复精度,操作者有必要加深对数控设备的了解,掌握更多的对刀技巧。

(1)对刀点的选择原则

在机床上容易找正,在加工中便于检查,编程时便于计算,而且对刀误差小。对刀点可以选择零件上的某个点(如零件的定位孔中心),也可以选择零件外的某一点(如夹具或机床上的某一点),但必须与零件的定位基准有一定的坐标关系。提高对刀的准确性和精度,即便零件要求精度不高或者程序要求不严格,所选对刀部位的加工精度也应高于其他位置的加工精度。择接触面大、容易监测、加工过程稳定的部位作为对刀点。对刀点尽可能与设计基准或工艺基准统一,避免由于尺寸换算导致对刀精度甚至加工精度降低,增加数控程序或零件数控加工的难度。为了提高零件的加工精度,对刀点应尽量选在零件的设计基准或工艺基准上。例如以孔定位的零件,以孔的中心作为对刀点较为适宜。对刀点的精度既取决于数控设备的精度,也取决于零件加工的要求,人工检查对刀精度以提高零件数控加工的质量。尤其在批生产中要考虑到对刀点的重复精度,该精度可用对刀点相对机床原点的坐标值来进行校核。

(2)对刀点的选择方法

对于数控车床或车铣加工中心类数控设备,由于中心位置(X0,Y0,A0)已有数控设备确定,确定轴向位置即可确定整个加工坐标系。因此,只需要确定轴向(Z0或相对位置)的某个端面作为对刀点即可。对于三坐标数控铣床或三坐标加工中心,相对数控车床或车铣加工中心复杂很多,根据数控程序的要求,不仅需要确定坐标系的原点位置(X0,Y0,Z0),而且要同加工坐标系G54、G55、G56、G57等的确定有关,有时也取决于操作者的习惯。对刀点可以设在被加工零件上,也可以设在夹具上,但是必须与零件的定位基准有一定的坐标关系,Z方向可以简单的通过确定一个容易检测的平面确定,而X、Y方向确定需要根据具体零件选择与定位基准有关的平面、圆。对于四轴或五轴数控设备,增加了第4、第5个旋转轴,同三坐标数控设备选择对刀点类似,由于设备更加复杂,同时数控系统智能化,提供了更多的对刀方法,需要根据具体数控设备和具体加工零件确定。对刀点相对机床坐标系的坐标关系可以简单地设定为互相关联,如对刀点的坐标为(X0,Y0,Z0),同加工坐标系的关系可以定义为(X0+Xr,Y0+Yr,Z0+Zr),加工坐标系G54、G55、G56、G57等,只要通过控制面板或其他方式输入即可。这种方法非常灵活,技巧性很强,为后续数控加工带来很大方便。

3.零点漂移现象

零点漂移现象是受数控设备周围环境影响因素引起的,在同样的切削条件下,对同一台设备来说、使用相同一个夹具、数控程序、刀具,加工相同的零件,发生的一种加工尺寸不一致或精度降低的现象。零点漂移现象主要表现在数控加工过程的一种精度降低现象或者可以理解为数控加工时的精度不一致现象。零点漂移现象在数控加工过程中是不可避免的,对于数控设备是普遍存在的,一般受数控设备周围环境因素的影响较大,严重时会影响数控设备的正常工作。影响零点漂移的原因很多,主要有温度、冷却液、刀具磨损、主轴转速和进给速度变化大等。

4.刀具补偿

经过一定时间的数控加工后,刀具的磨损是不可避免的,其主要表现在刀具长度和刀具半径的变化上,因此,刀具磨损补偿也主要是指刀具长度补偿和刀具半径补偿。

5.刀具半径补偿

在零件轮廓加工中,由于刀具总有一定的半径如铣刀半径,刀具中心的运动轨迹并不等于所需加工零件的实际轨迹,而是需要偏置一个刀具半径值,这种偏移习惯上成为刀具半径补偿。因此,进行零件轮廓数控加工时必须考虑刀具的半径值。需要指出的是,UG/CAM数控程序是以理想的加工状态和准确的刀具半径进行编程的,刀具运动轨迹为刀心运动轨迹,没有考虑数控设备的状态和刀具的磨损程度对零件数控加工的影响。因此,无论对于轮廓编程,还是刀心编程,UG/CAM数控程序的实现必须考虑刀具半径磨损带来的影响,合理使用刀具半径补偿。

6.刀具长度补偿

在数控铣、镗床上,当刀具磨损或更换刀具时,使刀具刀尖位置不在原始加工的编程位置时,必须通过延长或缩短刀具长度方向一个偏置值的方法来补偿其尺寸的变化,以保证加工深度或加工表面位置仍然达到原设计要求尺寸。

7.机床坐标系

数控机床的坐标轴命名规定为机床的直线运动采用笛卡儿坐标系,其坐标命名为X、Y、Z,通称为基本坐标系。以X、Y、Z坐标轴或以与X、Y、Z坐标轴平行的坐标轴线为中心旋转的运动,分别称为A轴、B轴、C轴,A、B、C的正方向按右手螺旋定律确定。Z轴:通常把传递切削力的主轴规定为Z坐标轴。对于刀具旋转的机床,如镗床、铣床、钻床等,刀具旋转的轴称为Z轴。X轴:X轴通常平行与工件装夹面并与Z轴垂直。对于刀具旋转的`机床,例如卧式铣床、卧式镗床,从刀具主轴向工件方向看,右手方向为X轴的正方向,当Z轴为垂直时,对于单立柱机床如立式铣床,则沿刀具主轴向立方向看,右手方向为X轴的正方向。Y轴:Y轴垂直于X轴和Z轴,其方向可根据已确定的X轴和Z轴,按右手直角笛卡儿坐标系确定。

旋转轴的定义也按照右手定则,绕X轴旋转为A轴,绕Y轴旋转为B轴,绕Z轴旋转为C轴。数控机床的坐标轴如下图所示。

机床原点就是机床坐标系的坐标原点。机床上有一些固定的基准线,如主轴中心线;也有一些固定的基准面,如工作台面、主轴端面、工作台侧面等。当机床的坐标轴手动返回各自的原点以后,用各坐标轴部件上的基准线和基准面之间的距离便可确定机床原点的位置,该点在数控机床的使用说明书上均有说明。

8.零件加工坐标系和坐标原点

工件坐标系又称编程坐标系,是由编程员在编制零件加工程序时,以工件上某一固定点为原点建立的坐标系。零件坐标系的原点称为零件零点(零件原点或程序零点),而编程时的刀具轨迹坐标是按零件轮廓在零件坐标系的坐标确定的。加工坐标系的原点在机床坐标系中称为调整点。在加工时,零件随夹具安装在机床上,零件的装夹位置相对于机床是固定的,所以零件坐标系在机床坐标系中的位置也就确定了。这时测量的零件原点与机床原点之间的距离称作零件零点偏置,该偏置需要预先存储到数控系统中。在加工时,零件原点偏置便能自动加到零件坐标系上,使数控系统可按机床坐标系确定加工时的绝对坐标值。因此,编程员可以不考虑零件在机床上的实际安装位置和安装精度,而利用数控系统的偏置功能,通过零件原点偏置值,补偿零件在机床上的位置误差,现在的数控机床都有这种功能,使用起来很方便。零件坐标系的位置以机床坐标系为参考点,在一个数控机床上可以设定多个零件坐标系,分别存储在G54/G59等中,零件零点一般设在零件的设计基准、工艺基准处,便于计算尺寸。一般数控设备可以预先设定多个工作坐标系(G54~G59),这些坐标系存储在机床存储器内,工作坐标系都是以机床原点为参考点,分别以各自与机床原点的偏移量表示,需要提前输入机床数控系统,或者说是在加工前设定好的坐标系。加工坐标系(MCS)是零件加工的所有刀具轨迹输出点的定位基准。加工坐标系用OM-XM-YM-ZM表示。有了加工坐标系,在编程时,无需考虑工件在机床上的安装位置,只要根据工件的特点及尺寸来编程即可。加工坐标系的原点即为工件加工零点。工件加工零点的位置是任意的,是由编程人员在编制数控加工程序时根据零件的特点选定。工件零点可以设置在加工工件上,也可以设置在夹具上或机床上。为了提高零件的加工精度,工件零点尽量选在精度较高的加工表面上;为方便数据处理和简化程序编制,工件零点应尽量设置在零件的设计基准或工艺基准上,对于对称零件,最好将工件零点设在对称中心上,容易找准,检查也方便。

9.装夹原点

装夹原点常见于带回转(或摆动)工作台的数控机床和加工中心,比如回转中心,与机床参考点的偏移量可通过测量存入数控系统的原点偏置寄存器中,供数控系统原点偏移计算用。

;

⑵ 鏅阃氶摚搴娄笂镐庢牱鏀讳笣锛

鏁版带阈e簥鍙浠ユ敾涓濈殑
G84X_Y_Z_Q_R_F_S_K_L_
X_Y_Z_
X_Y_Z_
X_Y_Z_
X 瀛旂殑X鏂瑰悜鍧愭爣
Y 瀛旂殑Y鏂瑰悜鍧愭爣
Z 瀛旂殑娣卞害
Q 鍗曟″垏鍓婃繁搴
R 瀹夊叏楂桦害
F 杩涚粰阃熷害
S 杞阃
K 鏀昏灪绾规℃暟
L 阃鍒閲
鐗瑰埆娉ㄦ剰 杞阃熷拰杩涚粰阃熷害镄勪弗镙兼瘆渚
F=S*P
G74鏄宸︽棆铻虹汗锛屽拰G84浣跨敤鏂规硶涓镙

⑶ 西门子系统车削循环指令有哪些

车削循环
CYCLE93 切槽
CYCLE94 退刀槽(E和F形,根据DIN)
CYCLE95 带底切的毛坯切削
CYCLE96 螺纹退刀槽
CYCLE97 攻丝
CYCLE98 链螺纹

⑷ 我想要一个关于《数控毕业的论文》

第一部分:数控机床应用调查
一、 品正数控深孔钻床外型及简介
品正数控深孔钻床外型如图1-1

图1-1
品正数控深孔钻床简介:
深孔钻 : 自1982年生产以来, 一直占据生产的重要位置。 现市场对模具生产交期需求迫切, 深孔加工机快捷,便利, 不需要铰孔, 一步到位, 成了不可或缺的工具。更兼投资回收成本快速, 是抢占市场的利器。
二、深孔钻在设计上的优点
合运水道,热流道,顶针孔,油泵深孔,轧辊孔等深孔加工。 敝司深孔钻在设计上有以下的优点 :
1. 工作台, 底座机身, 立柱, 升降台, 全部 FC30铸铁成型, 加工时达至最佳的吸震效果。
2. 床身工作台底座一体成型, 结构一致, 筋骨强壮, 没有立柱与工作台分开的设计。
3. 滑轨, 工作台导轨, 采用V型导轨, 保证准确的导向性, 无方轨之侧间隙。滑动时无蛇行现象, 亦能维持滑动之顺畅。在强压下承载座与滑动座更紧密结合。两者接触而能平均受力。长时间运动能维持稳定之动静态精度, 而能达到增长机件寿命及提高加工品质。
4. 滑轨经热处理研磨, 更能保证耐用与刚性。
5. 采用良好的油压泵设计, 控制流量与压力, 确保使用寿命。
6. 另外更采用CNC 换刀系统装置, 只用轻轻按下控制键, 气动锁刀系统。 更换刀具方便。
7. 纸带与磁铁过滤装置, 能将钢材加工中铁屑与切削油废弃的微量元素过滤, 循环再用。
三、品正深孔钻规格表
深孔钻规格表
型号 MGD-813 MGD-1015 MGD-1520 MGD-1525
Table (单位 mm)
工作台尺寸 400x1500 600x2000 800x2300 800x2800
作业面积 1300x600x800(z1)x400(z2) 1500x600x1000 2000x1000x1500 2500x1000x1500
T型槽 18mmx63mmx5 22x34x5 22x34x7 22x34x7
主轴
主轴进给行程 800 1000 1250 1500
主轴进给速度 (mm/min) 20-5000mm
主轴直径 Φ120
主轴端至台面距离 70 mm
电动机
主轴(kw) 7.5kw
磁力分离器(W) 25W
纸带过滤器 25W
铁削排除机 (W) 0.375
油压泵 10HPx6P
润滑油泵 150Wx2
加工能力
加工深度 800 1000 1250 1500
钻孔能力 Φ3-25mm(32)
油压系统
切削油桶 (L) 1800LT
高压泵压力 (kg/cm2 ) 0-120
高压泵吐出量 (L/min) 5-70
最大载重 (kg) 1000 3000 5000 7000
机械净重 (kg) App.9000 App.10500 App.14500 App.16500
占地面积 App.3125x2046 App.5000x5000 App.5500x5500 App.6000x6000
第二部分:数控加工工艺分析
要求:能够根据图纸的几何特征和技术要求,运用数控加工工艺知识,选择加工方法、装夹定位方式、合理地选择加工所用的刀具及几何参数,划分加工工序和工步,安排加工路线,确定切削参数。在此基础上,能够完成中等复杂零件数控加工工艺文件的编制(至少两个零件的工艺分析)。一、加工平面凸轮零件上的槽与孔,外部轮廓已加工完,零件材料为HT200。 图2.1
1、零件图工艺分析
凸轮槽形内、外轮廓由直线和圆弧组成,几何元素之间关系描述清楚完整,凸轮槽侧面与 、 两个内孔表面粗糙度要求较高,为Ra1.6。凸轮槽内外轮廓面和 孔与底面有垂直度要求。零件材料为HT200,切削加工性能较好。
根据上述分析,凸轮槽内、外轮廓及 、 两个孔的加工应分粗、精加工两个阶段进行,以保证表面粗糙度要求。同时以底面A定位,提高装夹刚度以满足垂直度要求。
2、确定装夹方案
根据零件的结构特点,加工 、 两个孔时,以底面A定位(必要时可设工艺孔),采用螺旋压板机构夹紧。加工凸轮槽内外轮廓时,采用“一面两孔”方式定位,既以底面A和 、 两个孔为定位基准。
3、确定加工顺序及走刀路线
加工顺序的拟定按照基面先行、先粗后精的原则确定。因此应先加工用做定位基准的 、 两个孔,然后再加工凸轮槽内外轮廓表面。为保证加工精度,粗、精加工分开,其中 、 两个孔的加工采用钻孔—粗铰—精铰方案。走刀路线包括平面进给和深度进给两部分。平面进给时,外凸轮廓从切线方向切入,内凹轮廓从过渡圆弧切入。为使凸轮槽表面具有较好的表面质量,采用顺铣方式铣削。深度进给有两种方法:一种是在XOY平面(或YOX平面)来回铣削逐渐进刀到既定深度;另一种方法是先打一个工艺孔,然后从工艺孔进刀到既定深度。
4、刀具选择
根据零件特点选用8把刀具,如下表:
序号 刀具号 刀具 加工表面 备注
规格名称 数量 刀长/mm
1 T01 ¢5中心钻 1 钻¢5mm中心孔
2 T02 ¢19.6钻头 1 45 ¢20孔粗加工
3 T03 ¢11.6钻头 1 30 ¢12孔粗加工
4 T04 ¢20铰刀 1 45 ¢20孔精加工
5 T05 ¢12铰刀 1 30 ¢12孔精加工
6 T06 90°倒角铣刀 1 ¢20孔倒角1.5×45°
7 T07 ¢6高速钢立铣刀 1 20 粗加工凸轮槽内外轮廓 底圆角R0.5
8 T08 ¢6硬质合金立铣刀 1 20 精加工凸轮槽内外轮廓
5、切削用量选择
凸轮槽内、外轮廓精加工时留0.1㎜铣削余量,精铰 、 两个孔时留0.1㎜铰削余量。主轴转数是1000r/min。二、轴类零件的加工工艺分析与实例
一渗碳主轴(如图2-2),每批40件,材料20Cr,除内外螺纹外S0.9~C59。渗碳件工艺比较复杂,必须对粗加工工艺绘制工艺草图(如图)。
主轴加工工艺过程
工 序 工种 工步 工序内容及要求 机床设备(略) 夹具 刀具 量具
1 车 按工艺草图车全部至尺寸
工艺要求:(1)一端钻中心孔φ2。(2)1:5锥度及莫氏3#内锥涂色检验,接触面>60%。(3)各需磨削的外圆对中心孔径向跳动不得大于0.1
CA6140 莫氏3号铰刀 莫氏3号塞规1:5环规
检查
2 淬 热处理S0.9-C59
3 车 去碳。一端夹牢,一端搭中心架
<1> 车端面,保证φ36右端面台阶到轴端长度为40
<2> 修钻中心孔φ5B型
<3> 调头
车端面,取总长340至尺寸,继续钻深至85,60°倒角
检查
4 车 一夹一顶 CA6140
<1> 车M30×1.5–6g左螺纹大径及ф30JS5处至
Φ30

<2> 车φ25至φ25 、长43

<3> 车φ35至φ35

<4> 车砂轮越程槽
5 车 调头,一夹一顶
<1> 车M30×1.5–6g螺纹大径及φ30JS5处至φ30

<2> 车φ40至φ40

<3> 车砂轮越程槽
6 铣 铣19 二平面至尺寸

7 热 热处理HRC59
8 研 研磨二端中心孔
9 外磨 二顶尖,(另一端用锥堵) M1430A
<1> 粗磨φ40外圆,留0.1~0.15余量
<2> 粗磨φ30js外圆至φ30t (二处)台阶磨出即可
<3> 粗磨1:5锥度,留磨余量
10 内磨 用V型夹具(ф30js5二外圆处定位) M1432A
磨莫氏3#内锥(重配莫氏3#锥堵)精磨余量
0.2~0.25
11 热 低温时效处理(烘),消除内应力
12 车 一端夹住,一端搭中心架
<1> 钻φ10.5孔,用导向套定位,螺纹不攻 Z–2027
<2> 调头,钻孔φ5攻M6–6H内螺纹
<3> 锪孔口60°中心孔
<4> 调头套钻套钻孔ф10.5×25(螺纹不改)
<5> 锪60°中心孔,表面精糙度0.8 60°锪钻
检查
13 钳 <1> 锥孔内塞入攻丝套
<2> 攻M12–6H内螺纹至尺寸
14 研 研中心孔Ra0.8
15 外磨 工件装夹于二顶尖间
<1> 精磨φ40及φ35φ25外圆至尺寸
<2> 磨M30×1.5 M30×1.5左螺纹大径至30

<3> 半精磨ф30js5二处至ф30

<4> 精磨1:5锥度至尺寸,用涂色法检查按触面大于85% 1:5环规
16 磨 工件装夹二顶尖间,磨螺纹
<1> 磨M30×1.5–6g左螺纹至尺寸 M33×1.5左环规
<2> 磨M30×1.5–6g螺纹至尺寸 M33×1.5环规
17 研 精研中心孔Ra0.4
18 外磨 精磨、工件装夹于二顶尖间 M1432A
精磨2-φ30 至尺寸,注意形位公差

19 内磨 工件装在V型夹具中,以1–ф30外圆为基准,精磨莫氏3号内锥孔(卸堵,以2–ф30js5外圆定位),涂色检查接触面大于80%,注意技术要求“1”“2” MG1432A
检查
20 普 清洗涂防锈油,入库工件垂直吊挂 该轴类零件加工过程中几点说明:
1.采用了二中心孔为定位基准,符合前述的基准重合及基准统一原则。
2.该零件先以外圆作为粗基准,车端面和钻中心孔,再以二中心孔为定位基准粗车外圆,又以粗车外圆为定位基准加工锥孔,此即为互为基准原则,使加工有一次比一次精度更高的定位基准面。3号莫氏圆锥精度要求很高。因此,需用V型夹具以2-ф30js5外圆为定位基准达到形位公差要求。车内锥时,一端用卡爪夹住,一端搭中心架,亦是以外圆作为精基准。
3.半精加工、精加工外圆时,采用了锥堵,以锥堵中心孔作为精加工该轴外圆面的定位基准。
对锥堵要求:
① 锥堵具有较高精度,保证锥堵的锥面与其顶尖孔有较高同轴度。
② 锥堵安装后不宜更换,以减少重复安装引起的安装误差。
③ 锥堵外径靠近轴端处须制有外螺纹,以方便取卸锥堵。
4.主轴用20Cr低碳合金钢渗碳淬硬,对工件不需要淬硬部分发(M30×1.5-6g左、M30×1.5-6g、M12-6H、M6-6H)表面留2.5-3mm去碳层。
5.螺纹因淬火后,在车床上无法加工,如先车好螺纹后再淬火,会使螺纹产生变形。因此,螺纹一般不允许淬硬,所以在工件中的螺纹部分的直径和长度上必需留去碳层。对于内螺纹,在孔口也应留出3mm去碳层。
6.为保证中心孔精度,工件中心孔也不允许淬硬,为此,毛坯总长放长6mm。
7.为保证工件外圆的磨削精度,热处理后须安排研磨中心孔的工序,并要求达到较细的表面粗糙度。外圆磨削时,影响工件的圆度主要是由于二顶尖孔的同轴度,及顶尖孔的圆度误差。
8.为消除磨削应力,粗磨后安排低温时效工序(烘)。
9.要获高精度外圆,磨削时应分粗磨、半精磨、精磨工序。精磨安排在高精度磨床上加工。第三部分:编制数控加工程序
要求:能够根据图纸的技术要求和数控机床规定的指令格式与编程方法,正确地编制中等复杂典型零件的加工程序,或应用CAD/CAM自动编程软件编制较复杂零件的加工程序。(至少两个零件)。
一、 编制轴类零件(1)数控加工程序
如图3.1所示的零件。
毛坯为 42㎜的棒料,从右端至左端轴向走刀切削;粗加工每次进给深度1.5㎜,进给量为0.15㎜/r;精加工余量X向0.5㎜,Z向0.1㎜,切断刀刃宽4㎜。工件程序原点如图 图3.1所示。
该零件结构较为简单,属典型轴类零件,轴向尺寸80㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。
1. 选择刀具编号并确定换刀点
根据加工要求选用3包刀具:1号为外圆左边偏粗车刀,2号为外圆左偏精车刀,3号刀为外圆切断刀,换刀点与对刀点重合
2.确定加工路线
1)粗车外圆。从右至左切削外轮廓,采用粗车循环。
2)精车外圆。左端倒角→ 20㎜外圆→倒角→ 30㎜外圆→倒角→ 40㎜外圆。
(3)切断
3选择切削用量
选择切削用量参数见表3.1.
表3.1 选择切削用量参数转数指令 进给速度(mm/r) 刀具
粗车外圆 M43 0.15 1号
精车外圆 M44 0.1 2号
切断 M43 0.1 2号编写程序
O0001
M03T0101 M43 F0.15
G00 X43.Z0.
G01X0.
G00X42.Z0.
G71 U2.R0.3
G71 P1 Q2 U0.25 W0.1 F0.15
N1 G01 X18.
X20.Z-1.
Z-20.
X28.
X30.Z-21.
Z-50.
X38.
X40.Z-51.
Z-82.
N2 X44.
G00Z0
M00
M03 M44 T0202
G70 P1 Q2
G00Z5.
M00
M03 M43 T0303
G00 Z-44.
G01X0.
X44.
G00Z5.
M30 二、 编制轴类零件(2)数控加工程序
加工如图3-2所示零件,材料45钢,坯料 60×122。
1、刀具:T1——硬质合金93°右偏刀;
T2——宽3mm硬质合金割刀,D1——左刀尖。加工工序 材料 刀具
车外圆 硬质合金 T1
切槽 硬质合金 T2
该零件结构较为简单,属典型轴类零件,轴向尺寸120㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。
2、 选择刀具编号并确定换刀点
根据加工要求选用2包刀具:1号为外圆左边偏粗车刀,2号刀为外圆切断刀和切槽刀,换刀点与对刀点重合 3、程序编写
程序指令 说明
N10 G56 S300 M3 M7 T1; 选择刀具,设定工艺数据
N20 G96 S50 LIMS=3000 F0.3; 设定粗车恒线速度
N30 G0 X65 Z0; 快速引刀接近工件,准备车端面
N40 G1 X-2; 车端面
N50 G0 X65 Z10; 退刀
N60 CNAME=“LK2”; 轮廓调用
N70 R105=1 R106=0.2 R108=4 R109=0
R110=2 R111=0.3 R112=0.15; 毛坯循环参数设定
N80 LCYC95; 调用LCYC95循环轮廓粗加工
N90 G96 S80 LIMS=3000 F0.15; 设定精车恒线速度
N100 R105=5; 调整循环参数
N110 LCYC95; 调用LCYC95循环轮廓精加工
N120 G0 X100 Z150; 快速退刀,准备换割刀
N125 G97; 取消恒线速度
N130 T2 F.1 S250; 换T2割刀D1有效,调整工艺数据
N140 G0 X42 Z-33; 快速引刀至槽Z向左侧
N150 LCEXP2 P8; 调用子程序8次割8槽
N160 G0 X100 Z150 M9; 快速退刀,关冷却
N170 M2; 程序结束
LK2
N10 G1 X0 Z0;
N20 G3 X20 Z-10 CR=10;
N30 G1 Z-20;
N40 G2 X30 Z-25 CR=5;
N50 G1 X39.98 CHF=2.818;
N60 Z-100;
N70 X60 Z-105;
N80 M17;
LCEXP2
N10 G91 G1 X-14;
N20 G4 S2;
N30 G1 X14;
N40 G0 Z-8;
N50 G90 M17; 第四部分:绘制CAD零件图

⑸ 数控编程中的手动编程是什么

分类: 电脑/网络 >> 程序设计 >> 其他编程语言
问题描述:

请问什么是数控编程,手动编程又是什么,是在什么样的工作平台上工作的,是什么一种性质呢?请大家给小弟解释一下,我是这方面的弱弱呀,希望大家能说的清楚明白通俗点,,谢谢大家拉!!!!

解析:

1 引言

数控文字地址程序段格式中,G代码、M代码分别表示准备功能宇和辅助功能字,G、M代码在不同数控系统中分别表示不同的数控功能,有些数控系统还规定可使用几套G、M代码指令,这就为数控加工工艺的制订,数控加工程序的编制以及加工程序调试增添了许多灵活性,特别是特殊G、M代码的合理使用,对保证零件的加工质量和精度,防止数控机床各加工轴之间或刀具之间的干涉,提高数控机床的安全、稳定运行具有积极的现实意义。

2 数控加工中特殊G、M代码的使用

1) 延时G04指令

延时G04指令,其作用是人为暂时限制运行的加工程序,在程序中表示为“G04X-,或G04U-,或G04P-”。如“N0050 G04 X1.0”,表示当执行到此程序段时,进给中止1秒后再继续执行后续程序指令。G04指令中的延时时间在编程时设定,其选择范围为“0.001~99999.999秒或转(用 X或U指令的IS-B增量系统)。1~***********延时时间单位为0.0001秒或转(用P指令的IS-C增量系统)”。G04延时指令一般使用的几种情况为:①对不通孔作深度加工时,刀具送给到规定深度后,用G04指令可使刀具作非进给光整切削加工,然后退刀,保证孔底平整,并使相关表面无毛刺;②沟槽时,在槽底应让主轴空转几转再退刀。一般退刀槽都不须精加工,采用G04延时指令,有利于槽底光滑,提高零件整体质量;③数控车床上,在工件端面的中心钻60°的顶尖孔或倒45°角时,为使孔侧面、及倒角平整,使用G04指令使工件转过1转后再退刀;④车削轴类零件台肩,在刀具送给运行方向改变时,应在改变运行方向的指令间设置G04指令,以保证轴肩端与工件轴线的垂直度。

除以上一般使用情况,在实际数控加工的使用中,尝试着一些特殊使用的分析和研究,并从中得到了新启示:

(1) 采用步进电机为进给驱动系统的数控机床,特别是国内改进设计的数控机床,在高精度加工中,为避免频率变化过快造成对位移精度的影响,常人为将快速点进位G00指令路经分解为2个程序段,段1为快速点进位,段2为直线插补。由于高速点进位运行在开始时为升速,当升到设定的速度频率时为正常匀速运行,接近到达定位点时为降频(就是常说的自动升降速)。在段1后如果设置延时G04指令,可保证高速运行降频完全逗猜稳定后,再低速运行,使控制精度得以提高。特别是对于数控钻床加工时的孔定位特别明显。

(2) 大批量单件加工时间较短的零件加工中,启动按钮频繁使用,为减轻操作者由于疲劳或频繁按钮带来的误动作,用G04指令代替首件后零件的启动。延时时间按完成1件零件的装卸时间设定,在操作人员熟练地掌握数控加工程序后,延时的指令时间可以逐渐缩短,但需保证其一定的安全时间。零件加工程序设计成循环子程序,G04指令就设计在调用该循环子程序的主程序中,必要时设计选择计划停止M01指令作为程序的结束或检查。

(3) 数控车床用丝锥攻中心螺誉指誉纹时,需用弹性筒夹头攻牙,以保证丝锥攻至螺纹底部时不会崩断,并在螺纹底部设置G04延时指令,使丝锥作非进给切削加工,延时的时间需确保主轴完全停止,主轴完全停止后按原正转速度反转,丝锥按原导程后退。

程序举例:

M03 S300;攻牙主轴转速不能太快

G00 XO Z5.0;至工件中心坐标

G32 Z-20.0 F1.0 M05;攻丝完毕后主轴停止

G04 X5.0;丝锥延时5秒作非过给切削加工

G32 Z5.0 M04;主轴反转,丝锥后退

(4) 锁孔完毕退刀时,为避免退刀时留下螺旋划痕而影响表面粗糙度,应使镗刀在孔底庆段作非进给停留,待主轴完全停止后再退刀。退刀时会留下垂直端面的退刀划痕,一般在镗孔加工工艺中是允许该退刀划痕存在的,利用该划痕还可以判断所镗孔的形状误差。

(5) 在发讯指令后须设置G04指令,以保证有足够的时间延时,等待发讯指令规定要求的动作开始或完成后,再运行后续程序,以确保加工的可靠性。如换刀位、开启关闭主轴、润滑或接通其它信号等。如:瑞士碧玛泰公司的S-188双主轴双刀塔数控车铣中心,配NUM 1050数控系统,在自动拉料时的程序为:

N0160 M60;夹具打开允许

N0170 M169;夹具打开

N0180 G04 FO.3

N0190 G01 ZL1;L1已赋值

N0200 M168;夹具夹紧

N0210 G04 FO.3

(6) 在主轴转速有较大的变化时,可设置G04指令。目的是使主轴转速稳定后,再进行零件的切削加工,以提高零件的表面质量。

程序举例:

N0010 S1000 M13;主轴转、冷却液开

N0020 T0302

N0030 G01 X32.4 FO.1

N0040 S3500 M03;主轴转速有较大的变化

N0050 G04 XO 6;延时 0. 6S

N0060 G01 Z-10.0 FO.02

(7) 在加工程序中有多种功能顺序执行时,必须设置G04指令。如机械手接零件、双主轴同步、从第1刀塔转换到第2刀塔加工等等,按动作的复杂程度,设定不同的G04延迟量,以使前一动作完全结束,再进行下一动作,避免干涉。

(8) 在铣加工过程中,当加工刀径相同的圆弧角时,可设置G04指令。可以消除让刀所带来的锥度和实际加工的R偏差,但圆弧角的表面质量会下降。

程序举例:

N0120 G03 X20.5 Y18.6 R6 F100

N0130 G04 XO.5

N0140 G01 Y50.5 F300

(9) 在主轴空运行时,用G04设置每档转速的时间,编一段热机程序,让设备自动运行,可以使热机的效果更加的良好。

如:

N0220 M03 S1000

N0230 G04 X600

N0240 S5000

N0250 G04 X600

N0260 S10000

N0270 G04 X600

2) 返回参考点G26、G27、G28、G29指令

参考点是机床上的一个固定点,通过参考点返回功能刀具可以容易地移动到该位置。参考点主要用作自动换刀或设定坐标系,刀具能否准确地返回参考点,是衡量其重复定位精度的重要指标,也是数控加工保证其尺寸一致性的前提条件。

实际加工中,巧妙利用返回参考点指令,可以提高产品的精度。

(1) 对于重复定位精度很高的机床,为了保证主要尺寸的加工精度,在加工主要尺寸之前,刀具可先返回参考点再重新运行到加工位置。如此做法的目的实际上是重新校核一下基准,以确定加工的尺寸精度。

(2) 对于多轴联动机床,特别是多轴多刀塔机床,程序开始段,一般设回参考点指令,避免换刀或多轴联动加工时出现干涉情况。

(3) 四轴以上的加工中心在进行B轴旋转前,双主轴车床在主、副轴同步加工前,设置回参考点指令,可防止发生撞刀事故。如:HERMLE 600U五轴五联动立式加工中心,配Heidenhain i530数控系统,其B轴可±110°旋转,而刀库在主轴后面,在B轴旋转前,都加回参考点指令。

(4) 双主轴车床,只在一主轴加工时,用回参考点指令,使另一主轴在参考点位置,能使程序顺利执行并保证加工精度。如 S188双主轴双刀塔数控车铣中心,只在一个主轴加工零件时,首先用G28指令,将另一主轴和刀塔返回参考点位置,以便加工顺利进行。

(5) 对于多轴纵切机床,当因各种原因要封闭某一轴时,用回参考点指令,使此一轴在参考点位置,然后再进行封闭,能保证此轴的位置度。如TONUS DECO2000机床,因加工要求必须封闭X4和Z4轴,在此情况下,在进行系统屏蔽X4和Z4轴之前,执行返回参考点操作。

(6) 在修理某一轴的伺服单元时,一般先进行回参考点操作(如有可能),以避免在该轴失电时,坐标位置的丢失。如美国哈挺公司COBRA 42机床,因X轴电机运转有杂音需检查,在检查前执行返回参考点操作。

3) 相对编程G91与绝对编程G90指令

相对编程是以刀尖所在位置为坐标原点,刀尖以相对于坐标原点进行位移来编程。就是说,相对编程的坐标原点经常在变换,运行是以现刀尖点为基准控制位移,那么连续位移时,必然产生累积误差。绝对编程在加工的全过程中,均有相对统一的基准点,即坐标原点,所以其累积误差较相对编程小。

数控车削加工时,工件径向尺寸的精度比轴向尺寸高,所以在编制程序时,径向尺寸最好采用绝对编程,考虑到加工时的方便,轴向尺寸采用相对编程,但对于重要的轴向尺寸,也可以采用绝对编程。数控铣床加工时,对于重要的尺寸应采用绝对编程。在数控车铣加工中心加工零件时,一般在车加工时用相对编程,变换为铣加工时,用绝对编程。如:EMCO 332数控车铣中心,配西门子 840D数控系统,双主轴双刀塔,在进行车铣加工时的程序:

M06 T10

M38;车方式,默认在G91相对编程

M04 S1000 M08

G95 FO.03

G00 X8.0 YO Z10.0

G00 Z1.0

G01 Z-11.55 FO.01

M06 T13

M39;铣方式,G91相对编程、G90绝对编程

G00 G90 X-L12 Z1;L12已赋值

G01 G90 Z-9.5 F1200

G01 G91 XO.30

G00 G90 Z1

另外,为保证零件的某些相对位置,按照工艺的要求,进行相对编程和绝对编程的灵活使用。

4) 主轴松开夹紧指令

主轴松开和夹紧指令,在正常的情况下,是装卸零件时使用,但对于多主轴车床来说,还有其他的用途:

(1) 用于双轴同步加工。在加工细长轴类零件时,用主、副轴分别夹持零件的两端,利用夹套夹紧时的后缩力,使零件处于被拉紧状态,再进行切削加工,可以防止因让刀产生锥度,并能提高零件表面的加工质量。

(2) 对于数控纵切车床,经过合理地设置主副轴的松开、夹紧指令,多次拉送料,分段多次加工,可以加工比额定行程长数倍的细长零件。笔者就曾在TONUS DECO2000机床(Z轴行程64mm)上用此方法加工出长96mm的φ0.6mm和φ0.8mm台阶轴。

如:TONUS DECO2000机床为数控纵切车床,配基于FUNAC16系统而改进的、具有电子凸轮功能的、专为纵切机床配套的PNT2000(TONUS专利产品)数控系统,其编程方式有别于一般的车、铣,每一工步是技流程在各个框图中分别编,现仅列主加工工步的程序:

G00 G100 Z1=0 X1=1;主轴旋转、冷却、调刀另有工步

G01 X1=0.6 FO.05

G01 Z1=-60.0 FO.02

G01 X1=1.2 FO.05

G00 G100 X1=20

M111;松主轴

G04 XO.4

G01 Z1=0.0 FO.1

M110;主轴第二次夹紧

G04 XO.4

G01 G100 X1=1.2

G01 X=0.8 F=0.05

G01 Z1=-36.0 FO.02

G01 X1=1.2 FO.05

G00 G100 X1=20;转换到切断工步。

5) G53零点漂移指令

在一般情况下,G53~G59等指令,是运用在零件加工过程中需重新建立编程原点的情况下,如多个零件同时加工等,但如合理使用此类指令,可提高机床的效率。

对于大部分数控设备来说,在开机之后,必须进行一段时间的热机,以消除因主轴或刀塔发热所带来的误差。如果对机床熟悉,就可以在加工程序的开头设置G53~G59等指令,人为进行补偿,可以大幅缩短热机时间。如 S-188双主轴双刀塔数控车铣中心,因控制的轴数较多,如要尺寸完全稳定,每天需空运行2h左右,经一段时间的摸索,现用G53指令,即:G53 XO.04 YO.01。在2h内,每0.5h减少XO.01 YO.005,可将热机时间控制在0.5h以内。

批量生产,当工作台可以装夹数个零件时,在编程中运用G53~G59等指令,定义几个不同的加工原点,可以一次装夹加工数个零件,节省换刀时间,提高工作效率。如 VC750型立式加工中心,工作台为850mm×530mm,所加工零件的坯料为φ160mm,除去装夹部分,每次可装4个零件。程序如下:

G54 P1 M98

/G55 P1 M98

/G56 P1 M98

/G57 P1 M98

M99

将要加工的程序编成子程序(P1号),在调试时不执行带/的程序,批量生产后再执行。

6) G79跳转指令

G79指令为强行跳转,在车铣复合加工中心的零件加工程序中使用,可以带来很大的方便。如S-188双主轴双刀塔数控车铣中心,配NUM 1050数控系统,带自动拉料机构,在零件加工程序的编制中,如:

$ G79 N2037

N2037 GO X52.0 Z2.0

加入G79指令,可以很方便地进行各工步程序的调试,免去一般程序每调一步都要从头找程序段或在每一程序段结束加 M01的麻烦;同时可以直接跳转到程序结束句进行割断。

7) G09减速与精确定位指令

G09指令其功能是在执行下一条程序之前,减速并准确地停止在当前条程序所确定的位置。在精加工时使用,可以使加工的形位尺寸准确,如 S-188双主轴双刀塔数控车铣中心,配NUM 1050数控系统:

G01 Z1 FO.02

G01 G09 ZO.5

G01 G09 X9.745 Z-0.4

G01 Z-11.52

3 结束语

数控加工是基于数控程序的自动化加工方式,在实际加工中,对G、M代码进行深入分析与研究,对传统加工方法进行变革,需要有较强的程序指令运用能力和丰富的实践技能。作者从事数控技术教学、数控加工及数控设备的维护近20年,碰到非常多的技术难题,在特殊G、M代码的使用方面,积累了一定的经验。在数控加工程序中,用好这些特殊G、M代码,对提高零件的加工质量和精度,使用、维护好数控机床具有重要意义。

阅读全文

与数控钻床g84攻牙编程相关的资料

热点内容
腾讯会议服务器地址 浏览:29
小电影为什么看不了 浏览:635
韩国推理片免费看正片 浏览:455
如何在自己电脑搞代理服务器 浏览:501
python经典算法 浏览:532
生活中的玛丽电影类似 浏览:144
王福庵pdf 浏览:423
私人电影院大概看多久 浏览:881
服务器怎么一直启动的 浏览:646
美娜大吉韩国电影 浏览:22
咏美演过的电影有哪些 浏览:464
韩剧爱情大尺推荐 浏览:262
馊子去哪儿了免费完整版 浏览:667
韩国在线观看免费完整版 浏览:533
赶尸艳谈同等级的都有啥台 浏览:45
国产农村偷情电影 浏览:352
如何取消已连接服务器密码错误 浏览:358
韩国迟度大又好看的电影钥匙 浏览:693
学ee的程序员 浏览:153
php自带web服务器 浏览:326