导航:首页 > 编程语言 > 协方差椭圆python

协方差椭圆python

发布时间:2024-08-06 13:45:08

‘壹’ python中kspace的用法

KSpace是一种Python库,它提供了一种易于使用的方式来创建、计算和可视化空间谱、空间功率谱和空间协方差函数。根据相关信息查询,KSpace可以用于处理任何形式的空间数据,例如高分辨率地形数据、气象数据和地震数据等。它可以方便地计算空间谱、空间功率谱和空间协方差函数,并可视化空间数据的形式。

‘贰’ Python数据分析 | 数据描述性分析

首先导入一些必要的数据处理包和可视化的包,读文档数据并通过前几行查看数据字段。

对于我的数据来说,由于数据量比较大,因此对于缺失值可以直接做删除处理。

得到最终的数据,并提取需要的列作为特征。

对类别数据进行统计:

类别型字段包括location、cpc_class、pa_country、pa_state、pa_city、assignee六个字段,其中:

单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。
单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。

对于数值型数据,首先希望了解一下数据取值范围的分布,因此可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。

按照发布的时间先后作为横坐标,数值范围的分布情况如图所示.

还可以根据最终分类的结果查看这些数值数据在不同类别上的分布统计。

箱线图可以更直观的查看异常值的分布情况。

异常值指数据中的离群点,此处定义超出上下四分位数差值的1.5倍的范围为异常值,查看异常值的位置。

参考:
python数据分析之数据分布 - yancheng111 - 博客园
python数据统计分析 -

科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。

在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显着水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显着性水平,则我们可以肯定的拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。

衡量两个变量的相关性至少有以下三个方法:

皮尔森相关系数(Pearson correlation coefficient) 是反应俩变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。

返回结果的第一个值为相关系数表示线性相关程度,其取值范围在[-1,1],绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value<0.05时,可以认为两变量存在相关性。

斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ) ,它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 秩或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。

返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显着。

kendall :

也可以直接对整体数据进行相关性分析,一般来说,相关系数取值和相关强度的关系是:0.8-1.0 极强 0.6-0.8 强 0.4-0.6 中等 0.2-0.4 弱 0.0-0.2 极弱。

‘叁’ PCA(主成分分析)python实现

回顾了下PCA的步骤,并用python实现。深刻的发现当年学的特征值、特征向量好强大。

PCA是一种无监督的学习方式,是一种很常用的降维方法。在数据信息损失最小的情况下,将数据的特征数量由n,通过映射到另一个空间的方式,变为k(k<n)。

这里用一个2维的数据来说明PCA,选择2维的数据是因为2维的比较容易画图。
这是数据:

画个图看看分布情况:

协方差的定义为:

假设n为数据的特征数,那么协方差矩阵M, 为一个n n的矩阵,其中Mij为第i和第j个特征的协方差,对角线是各个特征的方差。
在我们的数据中,n=2,所以协方差矩阵是2
2的,
通过numpy我们可以很方便的得到:

得到cov的结果为:
array([[ 0.61655556, 0.61544444],
[ 0.61544444, 0.71655556]])

由于我们之前已经做过normalization,因此对于我们来说,
这个矩阵就是 data*data的转置矩阵。

得到结果:
matrix([[ 5.549, 5.539],
[ 5.539, 6.449]])

我们发现,其实协方差矩阵和散度矩阵关系密切,散度矩阵 就是协方差矩阵乘以(总数据量-1)。因此他们的 特征根 特征向量 是一样的。这里值得注意的一点就是,散度矩阵是 SVD奇异值分解 的一步,因此PCA和SVD是有很大联系的,他们的关系这里就不详细谈了,以后有机会再写下。

用numpy计算特征根和特征向量很简单,

但是他们代表的意义非常有意思,让我们将特征向量加到我们原来的图里:

其中红线就是特征向量。有几点值得注意:

蓝色的三角形就是经过坐标变换后得到的新点,其实他就是红色原点投影到红线、蓝线形成的。

得到特征值和特征向量之后,我们可以根据 特征值 的大小,从大到小的选择K个特征值对应的特征向量。
这个用python的实现也很简单:

从eig_pairs选取前k个特征向量就行。这里,我们只有两个特征向量,选一个最大的。

主要将原来的数据乘以经过筛选的特征向量组成的特征矩阵之后,就可以得到新的数据了。

output:

数据果然变成了一维的数据。
最后我们通过画图来理解下数据经过PCA到底发生了什么。

绿色的五角星是PCA处理过后得到的一维数据,为了能跟以前的图对比,将他们的高度定位1.2,其实就是红色圆点投影到蓝色线之后形成的点。这就是PCA,通过选择特征根向量,形成新的坐标系,然后数据投影到这个新的坐标系,在尽可能少的丢失信息的基础上实现降维。

通过上述几步的处理,我们简单的实现了PCA第一个2维数据的处理,但是原理就是这样,我们可以很轻易的就依此实现多维的。

用sklearn的PCA与我们的pca做个比较:

得到结果:

用我们的pca试试

得到结果:

完全一致,完美~
值得一提的是,sklearn中PCA的实现,用了部分SVD的结果,果然他们因缘匪浅。

‘肆’ Python基础 numpy中的常见函数有哪些

有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。

数组常用函数
1.where()按条件返回数组的索引值
2.take(a,index)从数组a中按照索引index取值
3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个
4.a.fill()将数组的所有元素以指定的值填充
5.diff(a)返回数组a相邻元素的差值构成的数组
6.sign(a)返回数组a的每个元素的正负符号
7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引

改变数组维度
a.ravel(),a.flatten():将数组a展平成一维数组
a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组
a.transpose,a.T转置数组a

数组组合
1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合
2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合
3.row_stack((a,b))将数组a,b按行方向组合
4.column_stack((a,b))将数组a,b按列方向组合

数组分割
1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组
2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组

数组修剪和压缩
1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m
2.a.compress()返回根据给定条件筛选后的数组

数组属性
1.a.dtype数组a的数据类型
2.a.shape数组a的维度
3.a.ndim数组a的维数
4.a.size数组a所含元素的总个数
5.a.itemsize数组a的元素在内存中所占的字节数
6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型

数组计算
1.average(a,weights=v)对数组a以权重v进行加权平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差
3.a.prod()数组a的所有元素的乘积
4.a.cumprod()数组a的元素的累积乘积
5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数
6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和

以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。

‘伍’ 怎么用python表示出二维高斯分布函数,mu表示均值,sigma表示协方差矩阵,x表示数据点

clear
closeall
%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集

rand('state',0)
sigma_matrix1=eye(2);
sigma_matrix2=50*eye(2);

u1=[0,0];
u2=[30,30];
m1=100;
m2=300;%样本数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集
Y1=multivrandn(u1,m1,sigma_matrix1);
Y2=multivrandn(u2,m2,sigma_matrix2);

scatter(Y1(:,1),Y1(:,2),'bo')
holdon
scatter(Y2(:,1),Y2(:,2),'r*')
title('SM1数据集')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集
u11=[0,0];
u22=[5,5];
u33=[10,10];
u44=[15,15];
m=600;
sigma_matrix3=2*eye(2);
Y11=multivrandn(u11,m,sigma_matrix3);
Y22=multivrandn(u22,m,sigma_matrix3);
Y33=multivrandn(u33,m,sigma_matrix3);
Y44=multivrandn(u44,m,sigma_matrix3);
figure(2)
scatter(Y11(:,1),Y11(:,2),'bo')
holdon
scatter(Y22(:,1),Y22(:,2),'r*')
scatter(Y33(:,1),Y33(:,2),'go')
scatter(Y44(:,1),Y44(:,2),'c*')
title('SM2数据集')
end
functionY=multivrandn(u,m,sigma_matrix)
%%生成指定均值和协方差矩阵的高斯数据
n=length(u);
c=chol(sigma_matrix);
X=randn(m,n);
Y=X*c+ones(m,1)*u;
end

‘陆’ python数据统计分析

1. 常用函数库

  scipy包中的stats模块和statsmodels包是python常用的数据分析工具,scipy.stats以前有一个models子模块,后来被移除了。这个模块被重写并成为了现在独立的statsmodels包。

 scipy的stats包含一些比较基本的工具,比如:t检验,正态性检验,卡方检验之类,statsmodels提供了更为系统的统计模型,包括线性模型,时序分析,还包含数据集,做图工具等等。

2. 小样本数据的正态性检验

(1) 用途

 夏皮罗维尔克检验法 (Shapiro-Wilk) 用于检验参数提供的一组小样本数据线是否符合正态分布,统计量越大则表示数据越符合正态分布,但是在非正态分布的小样本数据中也经常会出现较大的W值。需要查表来估计其概率。由于原假设是其符合正态分布,所以当P值小于指定显着水平时表示其不符合正态分布。

 正态性检验是数据分析的第一步,数据是否符合正态性决定了后续使用不同的分析和预测方法,当数据不符合正态性分布时,我们可以通过不同的转换方法把非正太态数据转换成正态分布后再使用相应的统计方法进行下一步操作。

(2) 示例

(3) 结果分析

 返回结果 p-value=0.029035290703177452,比指定的显着水平(一般为5%)小,则拒绝假设:x不服从正态分布。

3. 检验样本是否服务某一分布

(1) 用途

 科尔莫戈罗夫检验(Kolmogorov-Smirnov test),检验样本数据是否服从某一分布,仅适用于连续分布的检验。下例中用它检验正态分布。

(2) 示例

(3) 结果分析

 生成300个服从N(0,1)标准正态分布的随机数,在使用k-s检验该数据是否服从正态分布,提出假设:x从正态分布。最终返回的结果,p-value=0.9260909172362317,比指定的显着水平(一般为5%)大,则我们不能拒绝假设:x服从正态分布。这并不是说x服从正态分布一定是正确的,而是说没有充分的证据证明x不服从正态分布。因此我们的假设被接受,认为x服从正态分布。如果p-value小于我们指定的显着性水平,则我们可以肯定地拒绝提出的假设,认为x肯定不服从正态分布,这个拒绝是绝对正确的。

4.方差齐性检验

(1) 用途

 方差反映了一组数据与其平均值的偏离程度,方差齐性检验用以检验两组或多组数据与其平均值偏离程度是否存在差异,也是很多检验和算法的先决条件。

(2) 示例

(3) 结果分析

 返回结果 p-value=0.19337536323599344, 比指定的显着水平(假设为5%)大,认为两组数据具有方差齐性。

5. 图形描述相关性

(1) 用途

 最常用的两变量相关性分析,是用作图描述相关性,图的横轴是一个变量,纵轴是另一变量,画散点图,从图中可以直观地看到相关性的方向和强弱,线性正相关一般形成由左下到右上的图形;负面相关则是从左上到右下的图形,还有一些非线性相关也能从图中观察到。

(2) 示例

(3) 结果分析

 从图中可以看到明显的正相关趋势。

6. 正态资料的相关分析

(1) 用途

 皮尔森相关系数(Pearson correlation coefficient)是反应两变量之间线性相关程度的统计量,用它来分析正态分布的两个连续型变量之间的相关性。常用于分析自变量之间,以及自变量和因变量之间的相关性。

(2) 示例

(3) 结果分析

 返回结果的第一个值为相关系数表示线性相关程度,其取值范围在[-1,1],绝对值越接近1,说明两个变量的相关性越强,绝对值越接近0说明两个变量的相关性越差。当两个变量完全不相关时相关系数为0。第二个值为p-value,统计学上,一般当p-value<0.05时,可以认为两变量存在相关性。

7. 非正态资料的相关分析

(1) 用途

 斯皮尔曼等级相关系数(Spearman’s correlation coefficient for ranked data ),它主要用于评价顺序变量间的线性相关关系,在计算过程中,只考虑变量值的顺序(rank, 值或称等级),而不考虑变量值的大小。常用于计算类型变量的相关性。

(2) 示例

(3) 结果分析

 返回结果的第一个值为相关系数表示线性相关程度,本例中correlation趋近于1表示正相关。第二个值为p-value,p-value越小,表示相关程度越显着。

8. 单样本T检验

(1) 用途

 单样本T检验,用于检验数据是否来自一致均值的总体,T检验主要是以均值为核心的检验。注意以下几种T检验都是双侧T检验。

(2) 示例

(3) 结果分析

 本例中生成了2列100行的数组,ttest_1samp的第二个参数是分别对两列估计的均值,p-value返回结果,第一列1.47820719e-06比指定的显着水平(一般为5%)小,认为差异显着,拒绝假设;第二列2.83088106e-01大于指定显着水平,不能拒绝假设:服从正态分布。

9. 两独立样本T检验

(1) 用途

 由于比较两组数据是否来自于同一正态分布的总体。注意:如果要比较的两组数据不满足方差齐性, 需要在ttest_ind()函数中添加参数equal_var = False。

(2) 示例

(3) 结果分析

 返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.19313343989106416,比指定的显着水平(一般为5%)大,不能拒绝假设,两组数据来自于同一总结,两组数据之间无差异。

10. 配对样本T检验

(1) 用途

 配对样本T检验可视为单样本T检验的扩展,检验的对象由一群来自正态分布独立样本更改为二群配对样本观测值之差。它常用于比较同一受试对象处理的前后差异,或者按照某一条件进行两两配对分别给与不同处理的受试对象之间是否存在差异。

(2) 示例

(3) 结果分析

 返回结果的第一个值为统计量,第二个值为p-value,pvalue=0.80964043445811551,比指定的显着水平(一般为5%)大,不能拒绝假设。

11. 单因素方差分析

(1) 用途

 方差分析(Analysis of Variance,简称ANOVA),又称F检验,用于两个及两个以上样本均数差别的显着性检验。方差分析主要是考虑各组之间的平均数差别。

 单因素方差分析(One-wayAnova),是检验由单一因素影响的多组样本某因变量的均值是否有显着差异。

 当因变量Y是数值型,自变量X是分类值,通常的做法是按X的类别把实例成分几组,分析Y值在X的不同分组中是否存在差异。

(2) 示例

(3) 结果分析

 返回结果的第一个值为统计量,它由组间差异除以组间差异得到,上例中组间差异很大,第二个返回值p-value=6.2231520821576832e-19小于边界值(一般为0.05),拒绝原假设, 即认为以上三组数据存在统计学差异,并不能判断是哪两组之间存在差异 。只有两组数据时,效果同 stats.levene 一样。

12. 多因素方差分析

(1) 用途

 当有两个或者两个以上自变量对因变量产生影响时,可以用多因素方差分析的方法来进行分析。它不仅要考虑每个因素的主效应,还要考虑因素之间的交互效应。

(2) 示例

(3) 结果分析

 上述程序定义了公式,公式中,"~"用于隔离因变量和自变量,”+“用于分隔各个自变量, ":"表示两个自变量交互影响。从返回结果的P值可以看出,X1和X2的值组间差异不大,而组合后的T:G的组间有明显差异。

13. 卡方检验

(1) 用途

 上面介绍的T检验是参数检验,卡方检验是一种非参数检验方法。相对来说,非参数检验对数据分布的要求比较宽松,并且也不要求太大数据量。卡方检验是一种对计数资料的假设检验方法,主要是比较理论频数和实际频数的吻合程度。常用于特征选择,比如,检验男人和女人在是否患有高血压上有无区别,如果有区别,则说明性别与是否患有高血压有关,在后续分析时就需要把性别这个分类变量放入模型训练。

 基本数据有R行C列, 故通称RC列联表(contingency table), 简称RC表,它是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。

(2) 示例

(3) 结果分析

 卡方检验函数的参数是列联表中的频数,返回结果第一个值为统计量值,第二个结果为p-value值,p-value=0.54543425102570975,比指定的显着水平(一般5%)大,不能拒绝原假设,即相关性不显着。第三个结果是自由度,第四个结果的数组是列联表的期望值分布。

14. 单变量统计分析

(1) 用途

 单变量统计描述是数据分析中最简单的形式,其中被分析的数据只包含一个变量,不处理原因或关系。单变量分析的主要目的是通过对数据的统计描述了解当前数据的基本情况,并找出数据的分布模型。

 单变量数据统计描述从集中趋势上看,指标有:均值,中位数,分位数,众数;从离散程度上看,指标有:极差、四分位数、方差、标准差、协方差、变异系数,从分布上看,有偏度,峰度等。需要考虑的还有极大值,极小值(数值型变量)和频数,构成比(分类或等级变量)。

 此外,还可以用统计图直观展示数据分布特征,如:柱状图、正方图、箱式图、频率多边形和饼状图。

15. 多元线性回归

(1) 用途

 多元线性回归模型(multivariable linear regression model ),因变量Y(计量资料)往往受到多个变量X的影响,多元线性回归模型用于计算各个自变量对因变量的影响程度,可以认为是对多维空间中的点做线性拟合。

(2) 示例

(3) 结果分析

 直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显着性,P<0.05则认为自变量具有统计学意义,从上例中可以看到收入INCOME最有显着性。

16. 逻辑回归

(1) 用途

 当因变量Y为2分类变量(或多分类变量时)可以用相应的logistic回归分析各个自变量对因变量的影响程度。

(2) 示例

(3) 结果分析

 直接通过返回结果中各变量的P值与0.05比较,来判定对应的解释变量的显着性,P<0.05则认为自变量具有统计学意义。

阅读全文

与协方差椭圆python相关的资料

热点内容
c语言能写出汇编的编译器吗 浏览:473
gcc不能编译的问题 浏览:147
字节跳动app什么时候可以用 浏览:775
车载obd防盗定位器连接什么app 浏览:154
pdf版电子书 浏览:785
视频数据加密协议 浏览:518
单片机转正弦波怎么用 浏览:981
compressor图片压缩 浏览:992
delphi程序员 浏览:379
服务器dc灯不亮是什么 浏览:196
androidsuc 浏览:72
编程原则自上而下单元 浏览:557
云计算服务器贵州云空间 浏览:38
登录服务器login输入什么 浏览:880
三点指标公式源码 浏览:544
黑马程序员fetch教程 浏览:442
不用编程的游戏引擎 浏览:533
点菜pdf 浏览:82
圣经pdf下载 浏览:291
如何打印到pdf文件 浏览:558