❶ 写 基于python的医疗数据爬取与可视化分析 的论文大体要写哪些内容 有啥建议吗
主要是两点或者三点
第一个是爬虫的技术框架,这个比较好,理解了
第二个是医疗数据内容以及可视化选择,就比如说医疗数据,你是用饼图还是柱状图去反映一些病情
然后写一些代码实践上的技术考量,以及运行结果
这就是核心了,然后照着论文框架套一下就可以了
❷ 有哪些 Python 经典书籍
《Python编程入门:从入门到实践》
【同时使用Python 2.X和3.X讲解】
Amazon编程入门类榜首图书,最值得关注的Python入门书
从基本概念到完整项目开发,帮助零基础读者迅速掌握Python编程,开发实际项目
这本书分两部分:
第一部分介绍用Python编程所必须了解的基本概念,包括matplotlib、NumPy和Pygal等强大的Python库和工具介绍,以及列表、字典、if语句、类、文件与异常、代码测试等内容;
第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D游戏开发,如何利用数据生成交互式的信息图,以及创建和定制简单的Web应用,并帮读者解决常见编程问题和困惑。
《Python基础教程(第2版·修订版)》
【Python 2.5讲解,Python 3上也能运行】
各大网店最畅销的Python入门书
全书分为三部分。
第一部分讲述Python语法,没有废话,还掺入了一些Python 3.0要注意的细节。
第二部分介绍了常用的GUI、框架等应用,点到即止,算是为第三部分做铺垫了,从数目众多的应用中可以了解到Python的强大。
第三部分是Project,全书最大的亮点,大家肯定喜欢。
作者将前面讲述的内容应用到10个引人入胜的项目中,并以模板的形式介绍了项目的开发过程,手把手教授Python开发。
《Python语言及其应用》
【Python 3.X】
语言风格轻松诙谐,讲解多种Python工具和第三方库
实例涉及商业、科研以及艺术领域使用Python开发各种应用
亚马逊最受欢迎的Python编程书之一,评分4.5
书中首先介绍了Python的基础知识,然后逐渐深入多种主题,结合教程和攻略式风格来讲解Python 3中的概念。每章结尾的练习可以帮助你巩固所学的知识。
本书会为你学习Python打下坚实的基础,包括测试、调试、代码复用的最佳实践以及其他开发技巧。
《Python编程入门(第3版)》
【Python 3.X 】
从算术运算、字符串、变量,到函数、数据结构、输入输出和异常处理,应有尽有
《父与子的编程之旅:与小卡特一起学Python》
【Python 2.X 】
原版Amazon 最受欢迎的青少年编程图书
最简单易学的内容组织方式,老少皆宜
第一版获Jolt大奖
本书中,Warren和Carter父子以亲切的笔调、通俗的语言,透彻全面地介绍了计算机编程世界。
他们以简单易学的Python语言为例,通过可爱的漫画、有趣的例子,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等编程的基本概念。
只要懂得计算机的基本操作,如启动程序、保存文件,任何人都可以跟随本书,由简入难,学会编写程序,甚至制作游戏。
本书内容经过教育专家的评审,经过孩子的亲身检验,并得到了家长的认可。
《编程导论》
【Python 2.7】
以麻省理工学院开放式课程(OpenCourseWare)中最受欢迎的计算机科学课程为基础,旨在培养读者的编程思维,使读者拥有计算机科学家的视野
本书涵盖了Python的大部分特性,重点介绍如何使用Python这门语言,共包含编程基础、Python程序设计语言、理解计算的关键概念、计算问题的解决技术等四个方面。
本书将Python语言特性和编程方法贯穿全书,目的是帮助读者在学习Python的同时掌握如何使用计算来解决有趣的问题。
《流畅的Python》
【兼顾Python 3和Python 2】
PSF研究员、知名PyCon演讲者心血之作
Python核心开发人员担纲技术审校
全面深入,对Python语言关键特性剖析到位
大量详尽代码示例,并附有主题相关高质量参考文献和视频链接
本书致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,避免重复劳动,同时写出简洁、流畅、易读、易维护,并且具有地道Python风格的代码。本书尤其深入探讨了Python语言的高级用法,涵盖数据结构、Python风格的对象、并行与并发,以及元编程等不同的方面。
《Python项目开发实战(第2版)》
【Python 2.7】
网罗Python项目开发中的流程,让你的编程事半功倍
Python项目与封装/团队开发环境/问题驱动开发/源码管理(Mercurial) Jenkins持续集成(CI)/环境搭建与部署的自动化(Ansible)/Django框架……
这是一本偏工程的图书,没怎么讲Python语言基础知识,直接告诉你怎么搭建开发环境,做好代码管理和文档管理以及缺陷管理等工作。
《Python网络编程攻略》
【Python 2.7】
可作为任何一门网络编程课程中培养实践技能的补充材料
需要读者对Python语言及TCP/IP等基本的网络概念有了解,但即使不精通也能通过本书理解相关概念
本书全面介绍了Python网络编程涉及的重要问题,包括网络编程、系统和网络管理、网络监控以及Web应用开发。作者通过70多篇攻略,清晰简明地描述了各种网络任务和问题,提出了可用于多种场景的解决方案,并细致地分析了整个操作过程。
《Python网络编程(第3版)》
【Python 3.X】
涵盖网络编程所有经典话题,提供大量代码清单及示例
从应用开发角度介绍网络编程基本概念、模块以及第三方库
本书针对想要深入理解使用Python来解决网络相关问题或是构建网络应用程序的技术人员,结合实例讲解了网络协议、网络数据及错误、电子邮件、服务器架构和HTTP及Web应用程序等经典话题。
具体内容包括:全面介绍Python3中最新提供的SSL支持,异步I/O循环的编写,用Flask框架在Python代码中配置URL,跨站脚本以及跨站请求伪造攻击网站的原理及保护方法,等等。
《Python性能分析与优化》
【Python 2.X】
全面掌握Python代码性能分析和优化方法
消除性能瓶颈,迅速改善程序性能
本书首先介绍什么是性能分析,性能分析如何在项目开发周期中发挥作用,以及通过在项目中进行性能分析实践能够取得的效果。
紧接着介绍分析性能所需的核心工具(性能分析器和可视化性能分析器)。
然后介绍一系列性能优化技术,最后一章会介绍一个具有实际意义的优化案例。
《精通Python设计模式》
【Python 3.X】
用现实例子展示各模式的关键特性
16种基本设计模式,轻松解决软件设计常见问题
本书分三部分,共16章介绍一些常用的设计模式。
第一部分介绍处理对象创建的设计模式,包括工厂模式、建造者模式、原型模式;
第二部分介绍处理一个系统中不同实体(类、对象等)之间关系的设计模式,包括外观模式、享元模式等;
第三部分介绍处理系统实体之间通信的设计模式,包括责任链模式、观察者模式等。
《Flask Web开发:基于Python的Web应用开发实战》
【Python 2.7和3.3】
从安装与环境设置讲起,一步一步搭建服务器端Web应用
全流程讲解Web应用开发,给出最佳实践
本书共分三部分,全面介绍如何基于Python微框架Flask进行Web开发。
第一部分是Flask简介,介绍使用Flask框架及扩展开发Web程序的必备基础知识。
第二部分则给出一个实例,真正带领大家一步步开发完整的博客和社交应用Flasky,从而将前述知识融会贯通,付诸实践。
第三部分介绍了发布应用之前必须考虑的事项,如单元测试策略、性能分析技术、Flask程序的部署方式等。
《Python Web开发:测试驱动方法》
【(Django、Selenium)相关部分使用Python 3.3讲解】
亚马逊4.8星评好书
实战式TDD开发指南,使用Django等流行框架开发现代Web应用!
学习Django、Selenium、Git、jQuery和Mock,以及其他当前流行Web开发技术
“这本书很棒、很有趣,所讲的全都是重点知识。如果有人想用Python做测试、学习Django或者想使用Selenium,我极力推荐这本书。要使开发者保持头脑清醒,测试可谓至关重要。Harry完成了一项不可思议的工作,他不仅吸引了我们对测试的关注,而且还探索了切实可行的测试实践方案。”
——Michael Foord,Python核心开发者,unittest维护者
《数据科学入门》
【Python 2.7】
Google数据科学家、软件工程师Joel Grus作品
用Python从零开始讲解数据科学的重量级读本
数据科学、机器学习、模式识别领域必备
本书从零开始讲解数据科学。
具体内容包括Python简介,可视化数据,线性代数,统计,概率,假设与推断,梯度下降法,如何获取数据,k近邻法,朴素贝叶斯算法等。
作者借助大量具体例子以及数据挖掘、统计学、机器学习等领域的重要概念,通过讲解基础数据科学工具和算法实现,带你快速跨入数据科学大门。
书中含大量数据科学领域的库、框架、模块和工具包。
《机器学习实战》
【Python 2.7】
最畅销机器学习图书
介绍并实现机器学习的主流算法
面向日常任务的高效实战内容
全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。
通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。
《机器学习系统设计》
【Python 2.7及以上】
微软Bing核心团队成员推出
聚焦算法编写和编程方式
结合大量实例学会解决实际问题
本书将向读者展示如何从原始数据中发现模式,首先从Python与机器学习的关系讲起,再介绍一些库,然后就开始基于数据集进行比较正式的项目开发了,涉及建模、推荐及改进,以及声音与图像处理。通过流行的开源库,我们可以掌握如何高效处理文本、图片和声音。同时,读者也能掌握如何评估、比较和选择适用的机器学习技术。
《Python数据处理》
【Python 2.7】
将数据处理过程自动化!
全面掌握用Python进行爬虫抓取以及数据清洗与分析的方法,轻松实现高效数据处理!
本书采用基于项目的方法,介绍用Python完成数据获取、数据清洗、数据探索、数据呈现、数据规模化和自动化的过程。
主要内容包括:Python基础知识,如何从CSV、Excel、XML、JSON和PDF文件中提取数据,如何获取与存储数据,各种数据清洗与分析技术,数据可视化方法,如何从网站和API中提取数据。
《Python数据分析基础教程:NumPy学习指南(第2版)》
【Python 2.7】
NumPy中文入门教程,Python数据分析首选
从最基础的知识讲起,手把手带你进入大数据挖掘领域
囊括大量具有启发性与实用价值的实战案例
本书从NumPy安装讲起,逐渐过渡到数组对象、常用函数、矩阵运算、线性代数、金融函数、窗函数、质量控制等内容,致力于向初中级Python编程人员全面讲述NumPy及其使用。
另外,通过书中丰富的示例,你还将学会Matplotlib绘图,并结合使用其他Python科学计算库(如SciPy和Scikits),让工作更有成效,让代码更加简洁而高效。
《Python数据挖掘入门与实践》
【Python 3.4】
全面释放Python的数据分析能力
掌握大数据时代核心技术,轻松入门数据挖掘技术并将其应用于实际项目
本书使用简单易学且拥有丰富第三方库和良好社区氛围的Python语言,由浅入深,以真实数据作为研究对象,真刀实枪地向读者介绍Python数据挖掘的实现方法。通过本书,读者将迈入数据挖掘的殿堂,透彻理解数据挖掘基础知识,掌握解决数据挖掘实际问题的最佳实践!
《Python科学计算基础教程》
【Python 2.7及以上】
精彩案例展示Numpy等科学计算模块的强大功能和广泛应用
剖析Python关于并行与大数据计算的方法
总结科学计算的任务、难点以及最佳实践经验
本书是将Python用于科学计算的实用指南,既介绍了相关的基础知识,又提供了丰富的精彩案例,并为读者总结了最佳实践经验。
其主要内容包括:科学计算的基本概念与选择Python的理由,科学工作流和科学计算的结构,科学项目相关数据的各个方面,用于科学计算的API和工具包,如何利用Python的NumPy和SciPy包完成数值计算,用Python做符号计算,数据分析与可视化,并行与大规模计算,等等。
《Python数据分析实战》
【Python 2.X】
了解Python在信息处理、管理和检索方面的强大功能
学会如何利用Python及其衍生工具处理、分析数据
三个真实Python数据分析案例,将理论付诸实践
《Python数据分析实战》展示了如何利用Python 语言的强大功能,以最小的编程代价进行数据的提取、处理和分析,主要内容包括:数据分析和Python 的基本介绍,NumPy 库,pandas 库,如何使用pandas 读写和提取数据,用matplotlib 库和scikit-learn 库分别实现数据可视化和机器学习,以实例演示如何从原始数据获得信息、D3 库嵌入和手写体数字的识别。
《Python网络数据采集》
【Python 3.X】
原书4.6星好评,一本书搞定数据采集
涵盖数据抓取、数据挖掘和数据分析
提供详细代码示例,快速解决实际问题
本书介绍网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导。
第一部分重点介绍网络数据采集的基本原理:如何用Python从网络服务器请求信息,如何对服务器的响应进行基本处理,以及如何以自动化手段与网站进行交互。
第二部分介绍如何用网络爬虫测试网站,自动化处理,以及如何通过更多的方式接入网络。
《Python计算机视觉编程》
【Python 2.6及以上】
亚马逊计算机视觉类图书No.1
详细剖析多种计算机视觉工具
大量示例极易上手
本书是计算机视觉编程的权威实践指南,通过Python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、3D重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。
❸ python论文参考文献有哪些
关于python外文参考文献举例如下:
1、A Python script for adaptive layout optimization of trusses.
翻译:用于桁架的自适应布局优化的Python脚本。
❹ python3实现自动化测试 [基于python语言实现自动化测试的研究]
[摘 要]自动化测试近年来的技术已经越来越成熟,在某些方面有着不可替代的作用,例如在性能测试,压力测试中,自动化测试可以模拟成千上万个用户对目标程序进行测试。本文通过对大型实际项目的分析研究,分析针对某一产品的自动化测试框架。然后讨论怎样用python实现自动化测试。
[关键词]测试技术手工测试自动化测试python脚本
[中图分类号]TP3[文献标识码]A[文章编号]1007-9416(2010)03-0088-01
地添加测试用例,为测试用例提供公用函数,执行测试用例,发送测试结果等功能。
1 自动化测试的重要概念
检查点(CheckPoint):将特定属性的当前数据与期望数据进行比较的地方,用于判定被测试程序的功能是否正确。
成本收益比:并不是所有的测试都适合自动化测试,衡量一个用例是否适合自动化测试一个很重要的参考是国际上流行的自动化测试成本收益比,即是p=k*n/c1+c2。各个参数的意义下:
K=手工执行自动化测试案例所花费的时间成本。
N=自动化测试案例执行的次数
C1=花费在自动化测试前期的(时间成本+人力成本+金钱成本)
C2=花费在自动化测试后期的(时间成本+人力成本+金钱成本)
二八定律:1897年意大利经济学家帕列托发现的二八定律在软件行业同样适用,而可以给我们很多启发,指导我们的软件开发和测试。80%的用户经常使用的是20%的软件功能。在软件测试中,80%的bug是集中在20%的软件模块中,对于自动化测试来说,找出这20%的测试用例是至关重要的。
2 自动化测试的执行步骤
每次脚本都是从一个统一的文件开始执行的,就是如上的Start.py。这样做的好处是可以把每个脚本都需要处理的工作放到一个文件中去执行,例如收集一些配置信息,读取命令行参数。以这样统一的处理风格为脚本的可读性提供了保证,也为简化了测试脚本的编写,不用每次都要处理一些基本的事务。
启动文件Start.py首先会读取命行参数,如pthon Start.py -s FileMenu.suite -t FileNew
通过python的内置函数sys.argv就可以读取命令行参数吵肢,非常方便。读取到命令行参数后,在Start.py内部可以判断命令行的格式是否符合我们的格式,如测试人员不小心把-s 写成了-z 这样就要退出测试执行。
如果输入的格式是正确的,Start.py 负责在特定的目录下寻找特定的Suite文件和Testcase。Suite文件和Testcase的格式会在下边的具体实例中作介绍。
找到特定的Testcase后就可以执行测试用例,根据检查点的通过或失败发送测试报告,该报告会以网页的形式显示,方便测试人员和开发人员的查找调试。
3 用python实现GUI测试
图形用户界面(GUI) 就是使用图象,输入的文字,带图标的计算机界面,取而代之了许多键盘的功能。GUI可以让用户通过图标和鼠标与计算机进行交互,而不是单调地在命令行中输入文本进行操作。设计良好的图形用户界面可以使用户从命令中解放出来。
GUI测试主要包括两个方面:一是纯GUI测试,主要关注应用程序上GUI组件是否符合规范或是用户的使用习惯,二是功能测试,主要是检验和验证系统是否实现了系统的业务需求,旨在验证系统的业务实现能力。但事实上两者不是完全独立的,一方面GUI的测试必定要触发功能,另一方面,功能测试也一定要通过GUI将搜碰洞事件传递给后台服务。
3.1 编写测试用例
ID 466540 :: Test CaseGeneral UI File Menu
Version 2
世枯PriorityP1
Summary:Verify File New window
Steps
SelectFile -> New
Expected Results
1. The VM creation window should open.
Keywords: i18n
Requirements : None
Created on 09/22/2008 20:58:23by wangw
Last modified on04/17/2009 00:20:53by marian
3.2 测试用例分析
以上是一个完整测试用例, 该测试用例包括:
测试ID 466540 , 有了测试ID就可以在测试人员提交bug后,QA或开发人员通过ID找到这个测试用例。还有一个更大的用处就是,在自动个脚本生成测试报告后,可以根据测试ID把该测试用例显示在测试报告中,以供测试人员和开发人员调试。
测试名称,根据测试名称应该可以很快了解测试用例的内容,所以好的测试名称也是非常重要的。
测试用例的版本(Version)。
测试优先级(Priority),测试优先级也是一个很重要的参数,因为大型项目都要有很多测试用例要执行。只有明确测试优先级才能确保重要的测试用例得以及时进行,保证软件质量。
测试用例概述(summary),帮助测试执行人员了解该测试用例的用测的功能。
测试步骤,描述测试人员或是自动化脚本每一步是怎样操作的,例如本例告诉测试人员选择菜单Fie,然后选择菜单项New。
预期结果(Expected Results),说明经过以上测试步骤,期望程序运行出现的结果。
4 结语
本文在明确软件测试理论的基础上,对自动化测试做了重点阐述,通过实际项目的自动化测试分析,有些测试用例特别适合用自动化测试。例如GUI测试中,用些是要验证界面元素是否显示正常。如果是脚本就可以准确无误地很快验证完毕,而用人工验证不仅容易出错而且费时间。由于时间和硬件条件有限,本论文规避了许多问题,所以仍有许多工作需要完成。例如:做好脚本的复用,使测试脚本不断积累。及研究怎样在测试工具和自己搭建框架中寻找平衡等。
[参考文献]
[1] 张克东.《软件工程与软件测试自动化教程》.北京:电子工业出版社,2002.
[2] 朱菊,王志坚,杨雪.《基于数据驱动的软件自动化测试框架》[J]计算机技术测试与发展,2006.
[3] 马瑞芳,王会燃.《计算机软件测试方法的研究》.小型微型计算机系统,2003.
[4] 朱鸿,金凌紫.《软件质量保障和测试》[M].北京:电子科学出版社,1997.
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
❺ python镐庝箞瀵瑰弬钥冩枃鐚杩涜屽叡琚寮曞垎鏋
钖埚苟鏁版嵁銆傚紩鏂囩绣缁灭殑鏋勫缓鏄锘轰簬AMSLER缃戠粶铡熺悊锛屽悓镞惰冭槛鏂囩尞涔嬮棿镄勫叡琚寮曟儏鍐靛拰钥﹀悎𨱍呭喌锛屽悎骞舵暟鎹鍙阃氲繃Python鎴栬呭竞闱㈢殑灏忓伐鍏疯繘琛屾搷浣溿侾ython鐢辫嵎鍏版暟瀛﹀拰璁$畻链虹戝︾爷绌跺︿细镄凣uidovanRossum浜1990骞翠唬鍒濊捐★纴浣滀负涓闂ㄥ彨锅欰BC璇瑷镄勬浛浠e搧銆
❻ 想学python看哪些书
在过去一年里,Python的热度一路飙升,国内越来越多的人选择学习Python,如今已然成为大量开发者推荐的入门编程语言和第二编程语言,而且Python还是人工智能的主要编程语言,因此,其重要性和流行度也就不言而喻了。
更多关于Python学习方面的知识,可以参考这篇文章:《Python学习的49个必备资源(附链接)》
想要学好Python语言,需要了解Python是什么,都能够做什么,知道算法,变量,解释器,还有Python的基本数据类型等。所以,本文将推荐几本学习Python编程必看的几本书籍。
Amazon编程入门类榜首图书,国内 Python 入门第一书。基于 Python3.5 同时也兼顾 Python2.7,是一本全面的Python编程,从入门到实践教程,带领读者快速掌握编程基础知识、编写出能解决实际问题的代码并开发复杂项目。上到有编程基础的程序员,下到10岁少年,想入门Python并达到可以开发实际项目的水平,这本书都是个不错的选择。
书中内容分为基础篇和实战篇两部分。基础篇介绍基本的编程概念,实战篇介绍如何利用新学到的知识开发功能丰富的项目:2D游戏《外星人入侵》,数据可视化实战,Web应用程序。
读者点评:
从编程小白的角度看,入门极佳。手把手教的感觉,却绝不啰嗦。什么叫入门书?一本书读下来,行文上不卡壳,逻辑上不跳跃,读者如爬楼梯,一步一步即可登楼。
“我读过很多本为Python初学者所写的入门书,到目前为止,这是我特别喜爱的一本。这本Python编程书内容全面,讲解详细,编排合理,真是太棒了!”
本书是经典教程的全新改版,作者根据Python 3.0版本的种种变化,全面改写了书中内容,如果你没有任何编程基础,那么,你最好先读完第一本的《Python 编程:从入门到实践》开始学习,之后选择这本作为你的第二本 Python 书。如果你已经是一位编程语言老手,也依然能够在这本书里学到不少知识。
相关推荐:《Python教程》
值得一提的是,书中最后几章的10各项目更是这本书最大的亮点,不仅实用而且讲解到位,作者Magnus Lie Hetland是挪威科技大学副教授,黑客,喜欢钻研新锐编程语言,写过很多Python方面的书和在线教程,深受读者喜爱。
读者书评:
做为python,又或者做为一门语言教程书籍,这本书讲得非常不错!特别是作者独特的写法以及幽默。有时作者会将不同的理解方式和实现方式放在一个例子中。更多的时候作者会有颇为有趣的幽默来让读者感到轻松愉快。
真的很好的一本书,该说的说得清楚,不该说的轻轻点到,读者想要网上查找的时候也有迹可循,轻重把握很好。 说说后面十个例子,的确不错,让人能快速有很好的理解。
这本书是由奋战在Python开发一线近20年的Luciano Ramalho执笔,致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,写出简洁、流畅、易读、易维护的代码。书中从语言设计层面剖析编程细节,兼顾Python 3 和Python 2,同时有大量详尽的代码示例,并附有主题相关高质量的参考文献和视频链接。
读者书评:
值得认真阅读的Python进阶书籍,章节后面附带的杂谈和延伸阅读有时间可以补充阅读。
对于想要扩充知识的中级和高级Python程序员来说,这本书是充满了实用编程技巧的宝藏。
这本书尤其适合缺乏编程基础的初学者,语法使用Python 3,书中不仅介绍了Python语言的基础知识,而且还通过项目实践教会读者如何应用这些知识和技能。本书的首部分介绍了基本Python编程概念,第二部分介绍了一些不同的任务,通过编写Python程序,可以让计算机自动完成它们。同时,每章的末尾还提供了一些习题和深入的实践项目,帮助读者巩固所学的知识。
读者书评:
这本书作者尽量写的简单化,让没有编程经验的人也可以快速上手!但是我觉得有其它编程语言经验的同学,也可以直接看着本书快速了解Python可以做什么,语法问题可以变做东西边查!
很不错的一本python入门书,介绍基本语法的比较少,但介绍了比较多实用的模块。其目的正如副标题所述,是为了将平时的繁琐工作自动化,就好像为自己写一个私人秘书。
本书更多的是想培养读者以计算机科学家一样的思维方式来理解Python语言编程。贯穿全书的主体是如何思考、设计、开发的方法。从基本的编程概念开始,一步步引导读者了解Python语言,再逐渐掌握函数、递归、数据结构和面向对象设计等高阶概念。本书第2版及其辅助代码均已升级,支持Python 3。
每个章节后面都有练习,可以帮助读者加深对刚学的编程概念的理解。而且,本书的示例代码均在GitHub仓库中维护,读者很容易下载和修改。
读者书评:
写得太好了,编程入门;编程思维。推荐。
与其说此书是python编程的入门,不如说是以python为工具对编程的入门。这个境界可完全不一样,从而此书在讲解python的时候也用python讲了很多编程原理,非常适合那些想用python作为入门编程的人,更重要的是本书完全开源。
Python程序设计(第3版)Python之父作序推荐,是经典畅销图书《Python核心编程(第二版)》的全新升级版本,书中包含Python 2和 Python 3代码,以便立即使用,总共分为3部分。
第1部分为讲解了Python的一些通用应用,包括正则表达式、网络编程、Internet客户端编程、多线程编程、GUI编程、数据库编程等。第2部分讲解了与Web开发相关的主题,包括Web客户端和服务器、CGI和WSGI相关的Web编程、Django Web框架等。第3部分则为一个补充/实验章节,包括文本处理以及一些其他内容。
读者书评:
终于,一本既可以作为Python教程又可以作为Python编程语言参考的图书问世!
本书写作相当精良。这是我遇到的清晰、友好的Python图书,它在一个广阔的背景中介绍了Python。它仔细、深入地剖析了一些重要的Python主题,而且读者无需大量的相关经验也能看懂。与所有其他Python入门类图书不同的是,它不会用隐晦、难以理解的文字来折磨读者,而是始终立足于帮助读者牢固掌握Python的语法和结构。
本书介绍Python 语言的基础知识及其在各个领域的具体应用,基于最新版本3.x。书中首先介绍了Python 语言的一些必备基本知识,然后介绍了在商业、科研以及艺术领域使用Python 开发各种应用的实例。文字简洁明了,案例丰富实用,是一本难得的Python 入门手册。
读者书评:
之前看完了?Python 编程:从入门到实践?,刚开始还在犹豫要不要买这本书,现在觉得非常值得,补充了一些?从入门到实践?中没有的内容。
不单介绍了python的基本语法,还介绍了python在各方面的应用以及可以使用的一些第三方模块,给初学者勾勒出一个未来要学习的框架。作者语言也十分有趣。
《Head First Python(中文版)》主要讲述了Python 3的基础语法知识以及如何使用Python快速地进行Web、手机上的开发。帮助你迅速掌握Python的基础知识,然后转向持久存储、异常处理、Web开发、SQLite、数据加工和lGoogle App Engine。从书籍的封面我们大概也可以猜得出这本书是通过采用丰富直观的形式使你的大脑真正开动起来,而不是长篇累牍地说教,让你昏昏欲睡。
【相关推荐】
1. 2020年5个经典python编程入门视频教程推荐学习
2. Python编程自学:一小时python入门教程
3. 《Python2爬虫入门教程指南》(系列教程)
4.《一个完整的Django入门指南》系列教程(中文版)
5. 《python一小时快速实战入门》(微软官方)