A. 介绍几个你比较熟悉的设计模式,并简单介绍它们是如何实现的
以下是几种格式的专业解释:
HDTV
一,HDTV的概念
要解释HDTV,我们首先要了解DTV。DTV是一种数字电视技术,是目前传统模拟电视技术的接班人。所谓的数字电视,是指从演播室到发射、传输、接收过程中的所有环节都是使用数字电视信号,或对该系统所有的信号传播都是通过由二进制数字所构成的数字流来 完成的。数字信号的传播速率为每秒19.39兆字节,如此大的数据流传输速度保证了数字电视的高清晰度,克服了模拟电视的先天不足。同时,由于数字电视可以允许几种制式信号的同时存在,因此每个数字频道下又可分为若干个子频道,能够满足以后频道不断增多的 需求。HDTV是DTV标准中最高的一种,即High Definision TV,故而称为HDTV。
二,HDTV中要求音、视频信号达到哪些标准?
HDTV规定了视频必须至少具备720线非交错式(720p,即常说的逐行)或1080线交错式隔行(1080i,即常说的隔行)扫描(DVD标准为 480线),屏幕纵横比为16:9。音频输出为5.1声道(杜比数字格式),同时能兼容接收其它较低格式的 信号并进行数字化处理重放。
HDTV有三种显示格式,分别是:720P(1280×720P,非交错式),1080 i(1920×1080i,交错式),1080P(1920×1080i,非交错式),其中网络上流传的以720P和1080 i最为常见,而在微软WMV-HD站点上1080P的样片相对较多。
三,如何收看HDTV节目?
目前有两种方式可欣赏到HDTV节目。一种是在电视上实时收看HDTV,需要满足两个条件,首先是电视可接收到HDTV信号,这需要额外添加相关的硬件,其次是电视符合HDTV标准,主要是指电视的分辨率和接收端口而言。
另一种是在电脑上通过软件播放。目前我国只有极少部分地区可接收到HDTV数字信号,而且HDTV电视的价格仍高高在上,不是普通消费者所能承受的。因此,在网络中找寻HDTC源,下载后在个人电脑上播放,成了大多数HDTV迷们的一个尝鲜方法。
四,哪些是可用于电脑播放的HDTV文件?
网络中流传的HDTV主要以两类文件的方式存在,一类是经过MPEG-2标准压缩,以.tp和.ts为后缀的视频流文件,一类是经过WMV-HD (Windows Media Video High Definition)标准压缩过的.wmv文件,还有少数文件后缀为.avi或.mpg,其性质与.wmv是完全一样的。
HDTV文件都比较大,即使是经过重新编码过后的.wmv文件也非同小可。以一部普通电影的时间长度来计算,.wmv文件将会有4G以上,而同样时间长度的.tp和.ts文件能达到8G以上,有的甚至达到20多G。因此,除了通过文件后缀名,还可以通过文 件大小来判断是否为HDTV文件。
五,如何在个人电脑上播放HDTV节目?
对于.wmv文件,只要系统安装了Windows Media Player 9 或更高版本,就可以正常播放,一些播放软件的最新版本已经开始支持WMV-HD,如WINDVD6等,也可以直接使用这些软件播放HDTV。有些HDTV文件在压缩过程中采用了其它标准的编码格式,就需要安装对应的解码器,遇到Windows Media Player 9不能正常播放时,可以再安装ffdshow,它带有各种最常用的解码器。
播放以.tp和.ts为后缀的视频流文件要稍微麻烦一点,因为文件中分别包含有AC3音频信息和MPEG-2视频信息。好在现下有已经不少专门播放.tp 和.ts文件的软件问世了,Moonlight-Elecard MPEG Player 就是其中一款比较常见的支持HDTV播放的软件,目前最新的版本为2.x。安装完后,也可以运行其它播放软件来调用Moonlight- Elecard MPEG Player的解码器进行播放。
六,如何鉴别HDTV的显示格式?
目前我们无法仅从文件名称、大小上来判定一个HDTV文件的显示格式是720P还是1080i,或是1080P,但是有不少软件可以在播放时显示影片的图像信息,如WINDVD、zplay等,在软件的控制面板中选择对应的选项就可以看到详细的信息。
七,为什么我只能看到图像,却听不到声音?
这是因为未安装AC3音频解码器,导致HDTV文件中的音频信息不能被正确识别的原因。解决的方法是下载并安装对应的音频解码器,常用的有 AC3Filter,这些音、视频解码器只需安装一次即可,播放HDTV文件时系统会自动调用,而不必每次播 放的时候都打开其控制界面。
八,为什么我播放HDTV时会出现丢帧现象?
在家用电脑上播放HDTV,对其硬件配置要求较高,主要是与CPU、显存、内存紧紧相关,如果这三样中有一样性能过低,就会产生一些播放问题。播放 HDTV时会出现丢帧现象是显存容量不够造成的,尤其是在播放1080 i格式HDTV的时候,1920×1080的像素量,需要足够大的显存才能满足其数据吞吐,因此显存至少需要64M以上,建议128M。由于是2D显示,所以对显卡核心的运算能力要求反而不是很高。
九,为什么我播放HDTV时会经常出现画面和语音停顿的现象?
一些采用了WMV-HD重新编码的HDTV文件,因为有着较高的压缩率,在播放时就需要非常高的CPU运算能力来进行实时解码,一般来说P4 2.0G/AMD 2000+ 以上及同级别的CPU可达到这个要求。同时,由于HDTV的数据流较大,需要足够的内存来支持,推荐在256M以上。如果你的电脑满足不了这样的配置,就可能会在播放过程中产生画面与语音不同步、画面经常停顿、爆音等现象。严重的话甚至无法顺利观看。如果 这种现象不太严重,则可以通过优化系统和一些小技巧来改善。
十,如何优化系统以保证顺利地播放HDTV?
除非你的电脑硬件配置的确很强,否则就很可能需要对系统进行一些优化,以便可以顺利地播放HDTV。首先是在播放HDTV前关闭所有没有用的后台程序或进程,尽量增加系统的空闲资源为播放HDTV服务;其次是选择一款占用系统资源较低的软件来播放HDTV 。Windows Media Player、WINDVD等软件占用系统资源较多,在硬件配置本就不高的系统上会影响HDTV的播放效果,这时可以选择使用BSPlayer。 BSPlayer是一款免费软件,最大的特点就是占用系统资源很小,尤其在播放HDTV文件时,与其它几个资源占用大户相比效果更为明显。另外,运行播放软件后立即打开任务管理器(仅在Windows 2000/XP中有效),将播放软件的进程级别设置为最高,这样也可以为HDTV的播放调用更多的系统资源。除此之外,安装更高版本的 DirectX,也能更好地支持HDTV的播放。
十一,还有什么其它的技巧?
如果你的PC可以流利地播放HDTV,那么你唯一会感到遗憾的,可能就是抱怨显示器太小和音箱太不够劲了。音箱的问题没有好的方法可以解决,必竟PC音箱和家庭影院的音箱两者是不可同比的,然而我们可以通过调高显示器的分辨率来提高画面的清晰度和细节感。 现在主流的显示器为17寸纯平CRT(因为改变标准分辨率只会给LCD带来负面影响,因此这种方法只针对普通的CRT显示器),中低档的17寸显示器很难达到1600×1200以上的分辨率,即使达到了其水平扫描率也在60Hz以下,但是请不要忘了,电视 信号的水平扫描率也就是在这个水平上。720P的水平扫描率为60Hz,1080i则有50Hz和60Hz两种,分别为我国和美国地区的标准。也就是说,即使你在显示器水平扫描率为60Hz的状态下全屏观看HDTV或DVD等其它视频,你是感觉不到晃眼的 ,这主要是由于人眼对于动态和静态物体的感应不同造成的。因此你可以在观看HDTV的时候,放心地将显示器水平扫描率设为60Hz,进而将分辨率调高,平时使用再调回标准分辨率即可。
存放HDTV文件的硬盘分区必须转换为NTFS格式,因为一部HDTV电影通常是几个4.3GB的视频文件组成(为了方便刻录在DVD上面),而FAT32是无法管理2GB以上的文件的,因此务必转换分区格式。
H.264
JVT(Joint Video Team,视频联合工作组)于2001年12月在泰国Pattaya成立。它由ITU-T和ISO两个国际标准化组织的有关视频编码的专家联合组成。JVT的工作目标是制定一个新的视频编码标准,以实现视频的高压缩比、高图像质量、良好的网络适应性等目标。目前JVT的工作已被ITU-T接纳,新的视频压缩编码标准称为H.264标准,该标准也被ISO接纳,称为AVC(Advanced Video Coding)标准,是MPEG-4的第10部分。
H.264标准可分为三档:
基本档次(其简单版本,应用面广);
主要档次(采用了多项提高图像质量和增加压缩比的技术措施,可用于SDTV、HDTV和DVD等);
扩展档次(可用于各种网络的视频流传输)。
H.264不仅比H.263和MPEG-4节约了50%的码率,而且对网络传输具有更好的支持功能。它引入了面向IP包的编码机制,有利于网络中的分组传输,支持网络中视频的流媒体传输。H.264具有较强的抗误码特性,可适应丢包率高、干扰严重的无线信道中的视频传输。H.264支持不同网络资源下的分级编码传输,从而获得平稳的图像质量。H.264能适应于不同网络中的视频传输,网络亲和性好。
H.261是最早出现的视频编码建议,目的是规范ISDN网上的会议电视和可视电话应用中的视频编码技术。它采用的算法结合了可减少时间冗余的帧间预测和可减少空间冗余的DCT变换的混合编码方法。和ISDN信道相匹配,其输出码率是p×64kbit/s。p取值较小时,只能传清晰度不太高的图像,适合于面对面的电视电话;p取值较大时(如 p>6),可以传输清晰度较好的会议电视图像。H.263 建议的是低码率图像压缩标准,在技术上是H.261的改进和扩充,支持码率小于64kbit/s的应用。但实质上H.263以及后来的H.263+和H.263++已发展成支持全码率应用的建议,从它支持众多的图像格式这一点就可看出,如Sub-QCIF、QCIF、CIF、4CIF甚至16CIF等格式。
MPEG-1标准的码率为1.2Mbit/s左右,可提供30帧CIF(352×288)质量的图像,是为CD-ROM光盘的视频存储和播放所制定的。MPEG-l标准视频编码部分的基本算法与H.261/H.263相似,也采用运动补偿的帧间预测、二维DCT、VLC游程编码等措施。此外还引入了帧内帧(I)、预测帧(P)、双向预测帧(B)和直流帧(D)等概念,进一步提高了编码效率。在MPEG-1的基础上,MPEG-2标准在提高图像分辨率、兼容数字电视等方面做了一些改进,例如它的运动矢量的精度为半像素;在编码运算中(如运动估计和DCT)区分“帧”和“场”;引入了编码的可分级性技术,如空间可分级性、时间可分级性和信噪比可分级性等。近年推出的MPEG-4标准引入了基于视听对象(AVO:Audio-Visual Object)的编码,大大提高了视频通信的交互能力和编码效率。 MPEG-4中还采用了一些新的技术,如形状编码、自适应DCT、任意形状视频对象编码等。但是MPEG-4的基本视频编码器还是属于和H.263相似的一类混合编码器。
总之,H.261建议是视频编码的经典之作,H.263是其发展,并将逐步在实际上取而代之,主要应用于通信方面,但H.263众多的选项往往令使用者无所适从。MPEG系列标准从针对存储媒体的应用发展到适应传输媒体的应用,其核心视频编码的基本框架是和H.261一致的,其中引人注目的MPEG-4的“基于对象的编码”部分由于尚有技术障碍,目前还难以普遍应用。因此,在此基础上发展起来的新的视频编码建议H.264克服了两者的弱点,在混合编码的框架下引入了新的编码方式,提高了编码效率,面向实际应用。同时,它是两大国际标准化组织的共同制定的,其应用前景应是不言而喻的。
JVT的H.264
H.264是ITU-T的VCEG(视频编码专家组)和ISO/IEC的MPEG(活动图像编码专家组)的联合视频组(JVT:joint video team)开发的一个新的数字视频编码标准,它既是ITU-T的H.264,又是ISO/IEC的MPEG-4的第10 部分。1998年1月份开始草案征集,1999年9月,完成第一个草案,2001年5月制定了其测试模式TML-8,2002年6月的 JVT第5次会议通过了H.264的FCD板。2003年3月正式发布。
H.264和以前的标准一样,也是DPCM加变换编码的混合编码模式。但它采用“回归基本”的简洁设计,不用众多的选项,获得比H.263++好得多的压缩性能;加强了对各种信道的适应能力,采用“网络友好”的结构和语法,有利于对误码和丢包的处理;应用目标范围较宽,以满足不同速率、不同分辨率以及不同传输(存储)场合的需求;它的基本系统是开放的,使用无需版权。
在技术上,H.264标准中有多个闪光之处,如统一的VLC符号编码,高精度、多模式的位移估计,基于4×4块的整数变换、分层的编码语法等。这些措施使得H.264算法具有很的高编码效率,在相同的重建图像质量下,能够比H.263节约50%左右的码率。H.264的码流结构网络适应性强,增加了差错恢复能力,能够很好地适应IP和无线网络的应用。
H.264的技术亮点
(1) 分层设计
H.264的算法在概念上可以分为两层:视频编码层(VCL:Video Coding Layer)负责高效的视频内容表示,网络提取层(NAL:Network Abstraction Layer)负责以网络所要求的恰当的方式对数据进行打包和传送。在VCL和NAL之间定义了一个基于分组方式的接口,打包和相应的信令属于NAL的一部分。这样,高编码效率和网络友好性的任务分别由VCL和NAL来完成。
VCL层包括基于块的运动补偿混合编码和一些新特性。与前面的视频编码标准一样,H.264没有把前处理和后处理等功能包括在草案中,这样可以增加标准的灵活性。
NAL负责使用下层网络的分段格式来封装数据,包括组帧、逻辑信道的信令、定时信息的利用或序列结束信号等。例如,NAL支持视频在电路交换信道上的传输格式,支持视频在Internet上利用RTP/UDP/IP传输的格式。NAL包括自己的头部信息、段结构信息和实际载荷信息,即上层的VCL数据。(如果采用数据分割技术,数据可能由几个部分组成)。
(2) 高精度、多模式运动估计
H.264支持1/4或1/8像素精度的运动矢量。在1/4像素精度时可使用6抽头滤波器来减少高频噪声,对于1/8像素精度的运动矢量,可使用更为复杂的8抽头的滤波器。在进行运动估计时,编码器还可选择“增强”内插滤波器来提高预测的效果。
在H.264的运动预测中,一个宏块(MB)可以按图2被分为不同的子块,形成7种不同模式的块尺寸。这种多模式的灵活和细致的划分,更切合图像中实际运动物体的形状,大大提高了运动估计的精确程度。在这种方式下,在每个宏块中可以包含有1、2、4、8或16个运动矢量。
在H.264中,允许编码器使用多于一帧的先前帧用于运动估计,这就是所谓的多帧参考技术。例如2帧或3帧刚刚编码好的参考帧,编码器将选择对每个目标宏块能给出更好的预测帧,并为每一宏块指示是哪一帧被用于预测。
(3) 4×4块的整数变换
H.264与先前的标准相似,对残差采用基于块的变换编码,但变换是整数操作而不是实数运算,其过程和DCT基本相似。这种方法的优点在于:在编码器中和解码器中允许精度相同的变换和反变换,便于使用简单的定点运算方式。也就是说,这里没有“反变换误差”。变换的单位是4×4块,而不是以往常用的8×8块。由于用于变换块的尺寸缩小,运动物体的划分更精确,这样,不但变换计算量比较小,而且在运动物体边缘处的衔接误差也大为减小。为了使小尺寸块的变换方式对图像中较大面积的平滑区域不产生块之间的灰度差异,可对帧内宏块亮度数据的16个4×4块的DC系数(每个小块一个,共16个)进行第二次4×4块的变换,对色度数据的4个4×4块的DC系数(每个小块一个,共4个)进行2×2块的变换。
H.264为了提高码率控制的能力,量化步长的变化的幅度控制在12.5%左右,而不是以不变的增幅变化。变换系数幅度的归一化被放在反量化过程中处理以减少计算的复杂性。为了强调彩色的逼真性,对色度系数采用了较小量化步长。
(4) 统一的VLC
H.264中熵编码有两种方法,一种是对所有的待编码的符号采用统一的VLC(UVLC :Universal VLC),另一种是采用内容自适应的二进制算术编码(CABAC:Context-Adaptive Binary Arithmetic Coding)。CABAC是可选项,其编码性能比UVLC稍好,但计算复杂度也高。UVLC使用一个长度无限的码字集,设计结构非常有规则,用相同的码表可以对不同的对象进行编码。这种方法很容易产生一个码字,而解码器也很容易地识别码字的前缀,UVLC在发生比特错误时能快速获得重同步。
图3显示了码字的语法。这里,x0,x1,x2,…是INFO比特,并且为0或1。图4列出了前9种码字。如:第4号码字包含INFO01,这一码字的设计是为快速再同步而经过优化的,以防止误码。
(5) 帧内预测
在先前的H.26x系列和MPEG-x系列标准中,都是采用的帧间预测的方式。在H.264中,当编码Intra图像时可用帧内预测。对于每个4×4块(除了边缘块特别处置以外),每个像素都可用17个最接近的先前已编码的像素的不同加权和(有的权值可为0)来预测,即此像素所在块的左上角的17个像素。显然,这种帧内预测不是在时间上,而是在空间域上进行的预测编码算法,可以除去相邻块之间的空间冗余度,取得更为有效的压缩。
如图4所示,4×4方块中a、b、...、p为16 个待预测的像素点,而A、B、...、P是已编码的像素。如m点的值可以由(J+2K+L+2)/ 4 式来预测,也可以由(A+B+C+D+I+J+K+L)/ 8 式来预测,等等。按照所选取的预测参考的点不同,亮度共有9类不同的模式,但色度的帧内预测只有1类模式。
(6) 面向IP和无线环境
H.264 草案中包含了用于差错消除的工具,便于压缩视频在误码、丢包多发环境中传输,如移动信道或IP信道中传输的健壮性。
为了抵御传输差错,H.264视频流中的时间同步可以通过采用帧内图像刷新来完成,空间同步由条结构编码(slice structured coding)来支持。同时为了便于误码以后的再同步,在一幅图像的视频数据中还提供了一定的重同步点。另外,帧内宏块刷新和多参考宏块允许编码器在决定宏块模式的时候不仅可以考虑编码效率,还可以考虑传输信道的特性。
除了利用量化步长的改变来适应信道码率外,在H.264中,还常利用数据分割的方法来应对信道码率的变化。从总体上说,数据分割的概念就是在编码器中生成具有不同优先级的视频数据以支持网络中的服务质量QoS。例如采用基于语法的数据分割(syntax-based data partitioning)方法,将每帧数据的按其重要性分为几部分,这样允许在缓冲区溢出时丢弃不太重要的信息。还可以采用类似的时间数据分割(temporal data partitioning)方法,通过在P帧和B帧中使用多个参考帧来完成。
在无线通信的应用中,我们可以通过改变每一帧的量化精度或空间/时间分辨率来支持无线信道的大比特率变化。可是,在多播的情况下,要求编码器对变化的各种比特率进行响应是不可能的。因此,不同于MPEG-4中采用的精细分级编码FGS(Fine Granular Scalability)的方法(效率比较低),H.264采用流切换的SP帧来代替分级编码。
H.264的性能测试
TML-8为H.264的测试模式,用它来对H.264的视频编码效率进行比较和测试。测试结果所提供的PSNR已清楚地表明,相对于MPEG-4(ASP:Advanced Simple Profile)和H.263++(HLP:High Latency Profile)的性能,H.264的结果具有明显的优越性,如图5所示。
H.264的PSNR比MPEG-4(ASP)和H.263++(HLP)明显要好,在6种速率的对比测试中,H.264的PSNR比MPEG-4(ASP)平均要高2dB,比H.263(HLP)平均要高3dB。6个测试速率及其相关的条件分别为:32 kbit/s速率、10f/s帧率和QCIF格式;64 kbit/s速率、15f/s帧率和QCIF格式;128kbit/s速率、15f/s帧率和CIF格式;256kbit/s速率、15f/s帧率和QCIF格式;512 kbit/s速率、30f/s帧率和CIF格式;1024 kbit/s速率、30f/s帧率和CIF格式。
实现难度
对每个考虑实际应用的工程师而言,在关注H.264的优越性能的同时必然会衡量其实现难度。从总体上说,H.264性能的改进是以增加复杂性为代价而获得的。目前全球也只有中国杭州海康威视数字技术有限公司在安防领域实现了H.264的实际应用,这一次我们走到了世界的前端!
1080p
1080P是标准层面上的HDTV或者硬件层面上FULL HD的最高标准之一,而FULL HD就是能够完全显示1920*1080像素或者说物理分辨率达到1920*1080的平板电视机。需要注意的是,FULL HD和先前很多厂家宣传的1080P并不是同样的概念。
但是我们走进卖场会发现大多数品牌商家都打着1080P的旗帜对外宣传,多少对我们的选购产生了阻碍.其实目前市场中的大多数平板电视都不是FULL HD,所谓的1080P只是支持1080P信号的接收并通过计算演变在屏幕上显示,大多数大屏幕平板电视都为1366*768,等离子中的部分产品更低,要达到FULL HD的概念,就必须屏幕达到1920*1080的物理分辨率以及至少30Hz的刷新率.
WAF
We Are Family 的简称 [我们是一家人]
WAF是韩国的一个影视制作小组,他们制作的DVDRIP是目前网上除了HDTV之外质量最好的,清晰度和音质都是上乘之作。
WAF的作品有以下特点:
1:严格控制每CD的容量,每CD的容量大小一般不超过0.05M(大家见过不少CD1是702M,CD2却是698M的现象吧)。
2:经过控制的容量,利于刻盘,(有些小组制作的容量经常可以超过702M,一CD盘的容量,这时候超刻技术就受重视了^_^)
3:分割片子时注意场景转换,极少造成一段场景有分裂感(例如4CD的《特洛伊》和4CD的《黑鹰》)。
4:每个片子压制的尺寸都以OAR为准,即导演原始版。
5:尺寸统一,几乎都是800线。(例:WAF20CD DTS版BOB,800*448,见过15CD的HDTVRIP版,居然有两种尺寸!)我不清楚,一部大片为什么大家会忍受得了分辨率为640甚至以下的版本?
6:有极强的负责任的制作态度,发现有瑕疵的一般都会推出修复版.
7:喜欢WAF的DTS和AC3音频和高码率压缩的视频.
8:WAF每部片分割成的CD数一般都比别的小组制作的要多,这是为了保证必要的画质和音质的质量。试想想有个加长版《角斗士》使用DTS音轨,却只分割成2CD,每CD有70多分钟长,不知这样压缩出来的片子画质能好到什么程度?
所以说,WAF小组出品的DVDRip一般都是网上最清晰的版本。
问题补充:
普通家用电视的分辨率是多少?是不是屏幕越大分辨率越高?
电视的NTSC标准为720x480 刷新率为60Hz , PAL为720x576,刷新率为50Hz。 我国电视广播采用 PAL制。
逐行电视接收隔行信号经过差补后可以达到逐行输出,同时75Hz刷新率 ,或者隔行输出,同时100Hz刷新率。
虽然PAL制可达576线,但普通电视的实际可分辨水平线数只有300~500。高清电视理论上可达720P 和1080i,就是说最多逐行720线。所以按理论来说,搞清电视用1024x768的VGA输入也勉强可以表现出来了,但实际因为聚焦不准,文字显示比能显示1024x768的显示器差很多,画面显示则没什么问题。
HDTV是不是没有经过压缩,最原始的视频?
网络中流传的HDTV主要以两类文件的方式存在,一类是经过MPEG-2标准压缩,以.tp和.ts为后缀的视频流文件,一类是经过WMV-HD (Windows Media Video High Definition)标准压缩过的.wmv文件,还有少数文件后缀为.avi或.mpg,其性质与.wmv是完全一样的。
H.264等压缩格式是不是为了方便网上传播?
在技术上,H.264标准中有多个闪光之处,如统一的VLC符号编码,高精度、多模式的位移估计,基于4块的整数变换、分层的编码语法等。这些措施使得H.264得算法具有很高的编码效率,在相同的重建图像质量下,能够比H.263节约50%左右的码率。H.264的码流结构网络适应性强,增加了差错恢复能力,能够很好地适应IP和无线网络的应用。
H.264能以较低的数据速率传送基于联网协议(IP)的视频流,在视频质量、压缩效率和数据包恢复丢失等方面,超越了现有的MPEG-2、MPEG-4和H.26x视频通讯标准,更适合窄带传输。
网上流传的Rip格式是什么意思?DVDRip
DVDRip理解:其实就是一种DVD的备份技术。
DVD我们都知道,目前非常优秀的媒体格式,MPEG2编码的视频;AC3、DTS的音轨。但是我们也知道DVD载体是DVD光盘,D5一张就有4.7G。显然,直接将DVD文件进行网络传送毫无实际价值可言,将这样的文件打包传到服务器上只会占用服务器的硬盘和大量的网络带宽。还没有多少人的网络带宽可以让他毫不动容地去下载一个7、8GB的文件只为了看两个小时电影,更不要说将它们保存下来,DVD刻录机这样的产品目前也不是一般人能拥有的。
这就需要rip了,将DVD的视频、音频、字幕剥离出来,再经过压缩或者其他处理,然后重新合成成多媒体文件。在更小的文件尺寸上达到DVD的是视听享受。
B. 课程内容框架
一 课程标准的基本框架是什么
《 XXXX 》课程标准
课程编号: (参照我校各专业人才培养方案及教学计划上编制的) 课程类型: (专业必修课/公共必修课/教育必修课)
— 1 —
学 时: XX 学 分: XX 适用对象: XX
一、课程定位 (本门课程在该专业中的地位及本门课程的主要任务) 二、课程设计
1.课程设计理念 (建议以“就业面向岗位”的需求为中心,以培养学生XXXX能力为依据设计,应
充分考虑到专业岗位的特点,尽可能的满足学生的就业需要,兼顾学生就业后持续发展的可能。)
2.课程设计思路
三、能力目标
1.社会能力 2.专业能力 3.方法能力
四、学习目标 五、学习情境
1.学习情境划分及学时分配(课程总标准)
学习情境划分及学时分配如表1所示。
表1:学习情境划分及学时分配
2.学习情境教学设计(课程章、节标准)(每节一个表格)
表2: 学习情境1: XXXXXXX(节名称)
学习情境2:XXXXXX
学习情境3:XXXXXX …………
六、教材和教参选用
1.推荐使用教材:(名称、出版社、版次) 2.参考资料;(名称、作者等。不限数量)
七、考核评价要求
1、评价内容及方式(建议平时过程管理与期末测评相结合,平时成绩计40%,期末计60%) 2.评价标准
八、教学资源要求
1、教学设备条件 2、教师团队
二 什么是课程框架问题
资料卡片(愿与各位同学共享):
课程框架问题包括基本问题,单元问题和内容问题。单元问题:
反映了基本的概念,
指向规律的核心;在内容范畴提出了重要的问题没有单一的,明显“正确”的答案。
基本问题:
能够激发学生的兴趣,内容问题,直接支持内容和学习目标,有特定的“正确”的答案
“在问题的解决,概念的理解和批评反思中,技术的应用是非常有效的。”
“利用技术,学生可花更多时间创新策略去解决复杂的问题和增强更高的理解能力。”
在一个持续一年的社会科学研究中,若研究的范围包括了诸如世界探险、工业革命、第二次世界大战等,它会是一个基本问题。
在交叉学科的研究中如语言艺术/社会科学研究,我们探讨问题的不同侧面,它也可以成为一个基本问题。
在研究一个特定的项目如“进化”时,它也可以成为一个单元问题
内容问题不同于单元问题和基本问题,大多涉及的是事实而不是该事实的阐释,都有明确的答案。
建构课程框架问题的提示:
开始去做…不要担心它的技巧和语言,重点是头脑风暴.
你先以陈述的方式把问题写下来,然后把它修改为疑问句。
如果需要的话,用成人的语言把基本意思写下来,然后把它转为“学生”的语言。
确认无论是基本问题还是单元问题,他们都不只有一个明显的“正确”答案。
不要过多担心你的问题到底是“基本问题”还是“单元问题—你要重点关注它是否需要更高层次的思维技能。
记住:一个好的问题和好的单元的形成是一个反复的过程!
三 java培训课程有什么内容具体有哪些模块框架
有几大技术框来架如下:
java语言和自数据库技术(1)开发环境(2)java语言基础(3)java面向对象(4)JDK核心API(5)数据库技术(6)JavaSE核心(7)XML(8)JBDC
2.Android各核心技术应用(1)软件工程基础(2)OOAD及设计模式(3)HTML/CSS(4)JavaScript核心(5)Android基础(6)Android核心组件(7)Android数据库技术(8)Android多媒体技术(9)Android2D/3D技术(10)Android游戏编程。
四 web课程里面会学习到哪几种框架呢
这里整理了一份系统全面的web前端学习路线,框架的相关内容在第三阶段,希望可以帮到你~
第一阶段:专业核心基础
阶段目标:
1. 熟练掌握HTML5、CSS3、Less、Sass、响应书布局、移动端开发。
2. 熟练运用HTML+CSS特性完成页面布局。
4. 熟练应用CSS3技术,动画、弹性盒模型设计。
5. 熟练完成移动端页面的设计。
6. 熟练运用所学知识仿制任意Web网站。
7. 能综合运用所学知识完成网页设计实战。
知识点:
1、Web前端开发环境,HTML常用标签,表单元素,Table布局,CSS样式表,DIV+CSS布局。熟练运用HTML和CSS样式属性完成页面的布局和美化,能够仿制任意网站的前端页面实现。
2、CSS3选择器、伪类、过渡、变换、动画、字体图标、弹性盒模型、响应式布局、移动端。熟练运用CSS3来开发网页、熟练开发移动端,整理网页开发技巧。
3、预编译css技术:less、sass基础知识、以及插件的运用、BootStrap源码分析。能够熟练使用 less、sass完成项目开发,深入了解BootStrap。
4、使用HTML、CSS、LESS、SASS等技术完成网页项目实战。通过项目掌握第一阶段、css的内容、完成PC端页面设计和移动端页面设计。
第二阶段:Web后台技术
阶段目标:
1. 了解JavaScript的发展历史、掌握Node环境搭建及npm使用。
2. 熟练掌握JavaScript的基本数据类型和变量的概念。
3. 熟练掌握JavaScript中的运算符使用。
4. 深入理解分之结构语句和循环语句。
5. 熟练使用数组来完成各种练习。
6.熟悉es6的语法、熟练掌握JavaScript面向对象编程。
7.DOM和BOM实战练习和H5新特性和协议的学习。
知识点:
1、软件开发流程、算法、变量、数据类型、分之语句、循环语句、数组和函数。熟练运用JavaScript的知识完成各种练习。
2、JavaScript面向对象基础、异常处理机制、常见对象api,js的兼容性、ES6新特性。熟练掌握JavaScript面向对象的开发以及掌握es6中的重要内容。
3、BOM操作和DOM操作。熟练使用BOM的各种对象、熟练操作DOM的对象。
4、h5相关api、canvas、ajax、数据模拟、touch事件、mockjs。熟练使用所学知识来完成网站项目开发。
第三阶段:数据库和框架实战
阶段目标:
1. 综合运用Web前端技术进行页面布局与美化。
2. 综合运用Web前端开发框架进行Web系统开发。
3. 熟练掌握Mysql、Mongodb数据库的发开。
4. 熟练掌握vue.js、webpack、elementui等前端框技术。
5. 熟练运用Node.js开发后台应用程序。
6. 对Restful,Ajax,JSON,开发过程有深入的理解,掌握git的基本技能。
知识点:
1、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,mongodb数据库。深入理解数据库管理系统通用知识及MySQL数据库的使用与管理,为Node.js后台开发打下坚实基础。
2、模块系统,函数,路由,全局对象,文件系统,请求处理,Web模块,Express框架,MySQL数据库处理,RestfulAPI,文件上传等。熟练运用Node.js运行环境和后台开发框架完成Web系统的后台开发。
3、vue的组件、生命周期、路由、组件、前端工程化、webpack、elementui框架。Vue.js框架的基本使用有清晰的理解,能够运用Vue.js完成基础前端开发、熟练运用Vue.js框架的高级功能完成Web前端开发和组件开发,对MVVM模式有深刻理解。
4、需求分析,数据库设计,后台开发,使用vue、node完成pc和移动端整站开发。于Node.js+Vue.js+Webpack+Mysql+Mongodb+Git,实现整站项目完整功能并上线发布。
第四阶段:移动端和微信实战
阶段目标:
1.熟练掌握React.js框架,熟练使用React.js完成开发。
2.掌握移动端开发原理,理解原生开发和混合开发。
3.熟练使用react-native和Flutter框架完成移动端开发。
4.掌握微信小程序以及了解支付宝小程序的开发。
5.完成大型电商项目开发。
知识点:
1、React面向组件编程、表单数据、组件通信、监听、声明周期、路由、Rex基本概念。练使用react完成项目开发、掌握Rex中的异步解决方案Saga。
2、react-native、开发工具、视图与渲染、api操作、Flutter环境搭建、路由、ListView组件、网络请求、打包。练掌握react-native和Flutter框架,并分别使用react-native和Flutter分别能开发移动端项目。
3、微信小程序基本介绍、开发工具、视图与渲染、api操作、支付宝小程序的入门和api学习。掌握微信小程序开发了解支付宝小程序。
4、大型购物网站实战,整个项目前后端分离开发;整个项目分为四部分:PC端网页、移动端APP、小程序、后台管理。团队协作开发,使用git进行版本控制。目期间可以扩展Three.js 、TypeScript。
五 如何理解课程的基本理念与内容框架
就是课程内容的最基本化,也是大范围的定向依据,还有相关的意义所在的意思……
六 高中数学课程框架有哪些主要的部分
高中数学课程框架有哪些主要的部分
高中数学课程分必修和选修。必修课程由 5 个模块组成;选修课程有 4 个系列,其中系列 1、
系列 2 由若干模块组成,系列 3、系列 4 由若干专题组成;每个模快 2 学分(36 学时),每
个专题 1 学分(18 学时),每 2 个专题可组成 1 个模块。
一、必修课程
必修课程是每个学生都必须学习的数学内容,包括 5 个模块。
数学 1: *** ,函数概念与基本初等函数 I(指数函数、对数函数、幂函数)。
数学 2:立体几何初步,平面解析几何初步。
数学 3:算法初步,统计, 概率。
数学 4:基本初等函数 II(三角函数)、平面上的向量,三角恒等变换。
数学 5:解三角形,数列,不等式。
二、选修课程
对于选修课程,学生可以根据自己的兴趣和对未来发展的愿望进行选择。选修课程由系列 1,
系列 2,系列 3,系列 4 等组成。
1、系列 1:由 2 个模块组成。
选修 1-1:常用逻辑用语、圆锥曲线与方程、导数及其初步应用。
选修 1-2:统计案例、推理与证明、数系扩充及复数的引入、框图。
2、系列 2:由 3 个模块组成。
选修 2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。
选修 2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。
选修 2-3:计数原理、统计案例、概率。
3、系列 3:由 6 个专题组成。
选修 3-1:数学史选讲;
选修 3-2:信息安全与密码;
选修 3-3:球面上的几何;
选修 3-4:对称与群;
选修 3-5:欧拉公式与闭曲面分类;
选修 3-6:三等分角与数域扩充。
4、系列 4:由 10 个专题组成。
七 Python课程内容都学习什么啊
这里整理了一份Python全栈开发的学习路线,要学习以下内容:
第一阶段:专业核心基础
阶段目标:
1. 熟练掌握Python的开发环境与编程核心知识
2. 熟练运用Python面向对象知识进行程序开发
3. 对Python的核心库和组件有深入理解
4. 熟练应用SQL语句进行数据库常用操作
5. 熟练运用Linux操作系统命令及环境配置
6. 熟练使用MySQL,掌握数据库高级操作
7. 能综合运用所学知识完成项目
知识点:
Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux操作系统。
1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。
2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。
3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。
4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为Python后台开发打下坚实基础。
5、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。
第二阶段:PythonWEB开发
阶段目标:
1. 熟练掌握Web前端开发技术,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系统中的前后端交互过程与通信协议
3. 熟练运用Web前端和Django和Flask等主流框架完成Web系统开发
4. 深入理解网络协议,分布式,PDBC,AJAX,JSON等知识
5. 能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理
6. 使用Web开发框架实现贯穿项目
知识点:
Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。
1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。
2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。
3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。
4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。
第三阶段:爬虫与数据分析
阶段目标:
1. 熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析
2. 熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取
3. 熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理
4. 熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取
5. 熟练掌握数据分析相关概念及工作流程
6. 熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用
7. 熟练掌握数据清洗、整理、格式转换、数据分析报告编写
8. 能够综合利用爬虫爬取豆瓣网电影评论数据并完成数据分析全流程项目实战
知识点:
网络爬虫开发、数据分析之Numpy、数据分析之Pandas。
1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,Beautifulfoup,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。
2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见操作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等操作。
3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和操作方法。
4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。
第四阶段:机器学习与人工智能
阶段目标:
1. 理解机器学习相关的基本概念及系统处理流程
2. 能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题
3. 熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等
4. 掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等
5. 掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目
知识点:
1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。
2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflow playround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。
八 什么是课程框架问题
资料卡片(愿与各位同学共享): 课程框架问题包括基本问题,单元问题和内容问题。单元问题: 反映了基本的概念, 指向规律的核心;在内容范畴提出了重要的问题没有单一的,明显“正确”的答案。 基本问题: 能够激发学生的兴趣,内容问题,直接支持内容和学习目标,有特定的“正确”的答案 “在问题的解决,概念的理解和批评反思中,技术的应用是非常有效的。” “利用技术,学生可花更多时间创新策略去解决复杂的问题和增强更高的理解能力。” 在一个持续一年的社会科学研究中,若研究的范围包括了诸如世界探险、工业革命、第二次世界大战等,它会是一个基本问题。 在交叉学科的研究中如语言艺术/社会科学研究,我们探讨问题的不同侧面,它也可以成为一个基本问题。 在研究一个特定的项目如“进化”时,它也可以成为一个单元问题 内容问题不同于单元问题和基本问题,大多涉及的是事实而不是该事实的阐释,都有明确的答案。 建构课程框架问题的提示: 开始去做…不要担心它的技巧和语言,重点是头脑风暴. 你先以陈述的方式把问题写下来,然后把它修改为疑问句。 如果需要的话,用成人的语言把基本意思写下来,然后把它转为“学生”的语言。 确认无论是基本问题还是单元问题,他们都不只有一个明显的“正确”答案。 不要过多担心你的问题到底是“基本问题”还是“单元问题—你要重点关注它是否需要更高层次的思维技能。 记住:一个好的问题和好的单元的形成是一个反复的过程!
C. 工业互联网的应用技术包括什么
工业互联网的本质和核心是通过工业互联网平台把设备、生产线、工厂、供应商、产品和客户紧密地连接融合起来。D. 大数据挖掘比赛咋分工
1、数据集的分割:组长负责对数据集进行抽样、采样和筛选,将数据集分割成学习集、测试集以及验证集。 2、处理、清洗数据:组员根据组长分割的数据集,对特征数据和结果数据进行清洗和处理,归一化等。 3、特征工程:组员和组长共同分析特征数据,挑选有效可用性最强的特征进行构建,尝试不同的特征选择算法。 4、合理组合模型:组长针对不同的特征组合,尝试多种模型,如决策树、随机森林、支持向量机等,找出最佳的特征组合和模型组合。 5、算法调优:组员负责组长调参选择后的模型参数调优,以获得最好的效果。 6、对结果进行验证:组员和组长共同验证最终的模型和结果,确保数据挖掘比赛可靠性。