⑴ 自偶降压启动0点位可以不用接触器直接短接吗
自偶降压启动0点位是否使用接触器直接短接,要看具体线路的设计方式。
只要保证在电动机运行时自偶变压器没有回路即可。
一般都使用零点短接与断开的方式对自偶变压器进行投切,因为自耦变压器的零点电流小,可使用相对较小的接触器。
⑵ 工业机器人涉及那些技术
四、工业机器人关键技术1.机器人基本系统构成工业机器人由3大部分6个子系统组成。3大部分是机械部分、传感部分和控制部分。6个子系统可分为机械结构系统、驱动系统、感知系统、机器人环境交互系统、人机交互系统和控制系统。
工业机器人系统构成1)工业机器人的机械结构系统由机座、手臂、末端操作器三大部分组成,每一个大件都有若干个自由度的机械系统。若基座具备行走机构,则构成行走机器人;若基座不具备行走及弯腰机构,则构成单机器人臂。手臂一般由上臂、下臂和手腕组成。末端操作器是直接装在手腕上的一个重要部件,它可以是二手指或多手指的手抓,也可以是喷漆枪、焊具等作业工具。2)驱动系统,要使机器人运作起来,需要在各个关节即每个运动自由度上安置传动装置,这就是驱动系统。驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。3)感知系统由内部传感器模块和外部传感器模块组成,用以获得内部和外部环境状态中有意义的信息。智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。人类的感受系统对感知外部世界信息是极其灵巧的,然而,对于一些特殊的信息,传感器比人类的感受系统更有效。4)机器人环境交换系统是现代工业机器人与外部环境中的设备互换联系和协调的系统。工业机器人与外部设备集成为一个功能单元,如加工单元、焊接单元、装配单元等。当然,也可以是多台机器人、多台机床或设备、多个零件存储装置等集成为一个去执行复杂任务的功能单元。5)人机交换系统是操作人员与机器人控制并与机器人联系的装置,例如,计算机的标准终端,指令控制台,信息显示板,危险信号报警器等。该系统归纳起来分为两大类:指令给定装置和信息显示装置。6)机器人控制系统是机器人的大脑,是决定机器人功能和性能的主要因素。控制系统的任务是根据机器人的作业指令程序以及传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。假如工业机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运行的形式,控制系统可分为点位控制和轨迹控制。点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。控制系统的任务是根据机器人的作业指令程序以及传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。假如工业机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运行的形式,控制系统可分为点位控制和轨迹控制。一套完整的工业机器人包括机器人本体、系统软件、控制柜、外围机械设备、CCD视觉、夹具/抓手、外围设备PLC控制柜、示教器/示教盒。
工业机器人设备下面重点对机器人的驱动系统、感知系统作出介绍。2.机器人的驱动系统工业机器人的驱动系统,按动力源分为液压,气动和电动三大类。根据需要也可由这三种基本类型组合成复合式的驱动系统。这三类基本驱动系统的各有自己的特点。液压驱动系统:由于液压技术是一种比较成熟的技术。它具有动力大、力(或力矩)与惯量比大、快速响应高、易于实现直接驱动等特点。适于在承载能力大,惯量大以及在防焊环境中工作的这些机器人中应用。但液压系统需进行能量转换(电能转换成液压能),速度控制多数情况下采用节流调速,效率比电动驱动系统低。液压系统的液体泄泥会对环境产生污染,工作噪声也较高。因这些弱点,近年来,在负荷为100kg以下的机器人中往往被电动系统所取代。青岛华东工程机械有限公司研制的全液压重载机器人如图所示。其大跨度的承载可达到2000kg,机器人的活动半径可达到近6m,应用在铸锻行业。
全液压重载机器人
气压驱动具有速度快、系统结构简单、维修方便、价格低等优点。但是由于气压装置的工作压强低,不易精确定位,一般仅用于工业机器人末端执行器的驱动。气动手抓、旋转气缸和气动吸盘作为末端执行器可用于中、小负荷的工件抓取和装配。气动吸盘和气动机器人手爪如图所示。
气动吸盘和气动机器人手爪电机驱动是现代工业机器人的一种主流驱动方式,分为4大类电机:直流伺服电机、交流伺服电机、步进电机和直线电机。直流伺服电机和交流伺服电机采用闭环控制,一般用于高精度、高速度的机器人驱动;步进电机用于精度和速度要求不高的场合,采用开环控制;直线电机及其驱动控制系统在技术上已日趋成熟,已具有传统传动装置无法比拟的优越性能,例如适应非常高速和非常低速应用、高加速度,高精度,无空回、磨损小、结构简单、无需减速机和齿轮丝杠联轴器等。鉴于并联机器人中有大量的直线驱动需求,因此直线电机在并联机器人领域已经得到了广泛应用。3.机器人的感知系统机器人感知系统把机器人各种内部状态信息和环境信息从信号转变为机器人自身或者机器人之间能够理解和应用的数据、信息,除了需要感知与自身工作状态相关的机械量,如位移、速度、加速度、力和力矩外,视觉感知技术是工业机器人感知的一个重要方面。视觉伺服系统将视觉信息作为反馈信号,用于控制调整机器人的位置和姿态。这方面的应用主要体现在半导体和电子行业。机器视觉系统还在质量检测、识别工件、食品分拣、包装的各个方面得到了广泛应用。通常,机器人视觉伺服控制是基于位置的视觉伺服或者基于图像的视觉伺服,它们分别又称为三维视觉伺服和二维视觉伺服,这两种方法各有其优点和适用性,同时也存在一些缺陷,于是有人提出了2.5维视觉伺服方法。基于位置的视觉伺服系统,利用摄像机的参数来建立图像信息与机器人末端执行器的位置/姿态信息之间的映射关系,实现机器人末端执行器位置的闭环控制。末端执行器位置与姿态误差由实时拍摄图像中提取的末端执行器位置信息与定位目标的几何模型来估算,然后基于位置与姿态误差,得到各关节的新位姿参数。基于位置的视觉伺服要求末端执行器应始终可以在视觉场景中被观测到,并计算出其三维位置姿态信息。消除图像中的干扰和噪声是保证位置与姿态误差计算准确的关键。二维视觉伺服通过摄像机拍摄的图像与给定的图像(不是三维几何信息)进行特征比较,得出误差信号。然后,通过关节控制器和视觉控制器和机器人当前的作业状态进行修正,使机器人完成伺服控制。相比三维视觉伺服,二维视觉伺服对摄像机及机器人的标定误差具有较强的鲁棒性,但是在视觉伺服控制器的设计时,不可避免地会遇到图像雅克比矩阵的奇异性以及局部极小等问题。针对三维和二维视觉伺服方法的局限性,F.Chaumette等人提出了2.5维视觉伺服方法。它将摄像机平动位移与旋转的闭环控制解耦,基于图像特征点,重构物体三维空间中的方位及成像深度比率,平动部分用图像平面上的特征点坐标表示。这种方法能成功地把图像信号和基于图像提取的位姿信号进行有机结合,并综合他们产生的误差信号进行反馈,很大程度上解决了鲁棒性、奇异性、局部极小等问题。但是,这种方法仍存在一些问题需要解决,如怎样确保伺服过程中参考物体始终位于摄像机视野之内,以及分解单应性矩阵时存在解不唯一等问题。在建立视觉控制器模型时,需要找到一种合适的模型来描述机器人的末端执行器和摄像机的映射关系。图像雅克比矩阵的方法是机器人视觉伺服研究领域中广泛使用的一类方法。图像的雅克比矩阵是时变的,所以,需要在线计算或估计。4.机器人关键基础部件机器人共4大组成部分,本体成本占22%,伺服系统占24%,减速器占36%,控制器占12%。机器人关键基础部件是指构成机器人传动系统,控制系统和人机交互系统,对机器人性能起到关键影响作用,并具有通用性和模块化的部件单元。机器人关键基础部件主要分成以下三部分:高精度机器人减速机,高性能交直流伺服电机和驱动器,高性能机器人控制器等。1)减速机减速机是机器人的关键部件,目前主要使用两种类型的减速机:谐波齿轮减速机和RV减速机。
谐波传动方法由美国发明家C.WaltMusser于20世纪50年代中期发明。谐波齿轮减速机主要由波发生器、柔性齿轮和刚性齿轮3个基本构件组成,依靠波发生器使柔性齿轮产生可控弹性变形,并与刚性齿轮相啮合来传递运动和动力,单级传动速比可达70~1000,借助柔轮变形可做到反转无侧隙啮合。与一般减速机比较,输出力矩相同时,谐波齿轮减速机的体积可减小2/3,重量可减轻1/2。柔轮承受较大的交变载荷,因而其材料的抗疲劳强度、加工和热处理要求较高,制造工艺复杂,柔轮性能是高品质谐波齿轮减速机的关键。
谐波齿轮减速机传动原理德国人LorenzBaraen于1926年提出摆线针轮行星齿轮传动原理,日本帝人株式会社(TEIJINSEIKICo.,Ltd)于20世纪80年代率先开发了RV减速机。RV减速机由一个行星齿轮减速机的前级和一个摆线针轮减速机的后级组成。相比于谐波齿轮减速机,RV减速机具有更好的回转精度和精度保持性。
减速机陈仕贤发明了活齿传动技术。第四代活齿传动——全滚动活齿传动(oscillatory roller transmission,ORT)已成功地应用到多种工业产品中。在ORT基础上提出的复式滚动活齿传动(compound oscillatory roller transmission,CORT)不但具有RV传动类似的优点,而且克服了RV传动曲轴轴承受力大、寿命低的缺点,进一步提高了使用寿命和承载能力;CORT的结构使其在同样的精度指标下回差更小,运动精度和刚度更高,缓解了RV传动要求制造精度高的缺陷,可相对降低加工要求,减少制造成本。CORT是我国自主开发的,拥有自主知识产权。鞍山耐磨合金研究所和浙江恒丰泰减速机制造有限公司均开发成功了机器人用CORT减速机。
ORT减速机 CORT减速机目前在高精度机器人减速机方面,市场份额的75%均两家日本减速机公司垄断,分别为提供RV摆线针轮减速机的日本Nabtesco和提供高性能谐波减速机的日本Harmonic Drive。包括 ABB, FANUC, KUKA,MOTOMAN在内国际主流机器人厂商的减速机均由以上两家公司提供,与国内机器人公司选择的通用机型有所不同的是,国际主流机器人厂商均与上述两家公司签订了战略合作关系,提供的产品大部分为在通用机型基础上根据各厂商的特殊要求进行改进后的专用型号。国内在高精度摆线针轮减速机方面研究起步较晚,仅在部分院校,研究所有过相关研究。目前尚无成熟产品应用于工业机器人。近年来国内部分厂商和院校开始致力高精度摆线针轮减速机的国产化和产业化研究,如浙江恒丰泰,重庆大学机械传动国家重点实验室,天津减速机厂,秦川机床厂,大连铁道学院等。在谐波减速机方面,国内已有可替代产品,如北京中技克美,北京谐波传动所,但是相应产品在输入转速,扭转高度,传动精度和效率方面与日本产品还存在不小的差距,在工业机器人上的成熟应用还刚刚起步。国内外工业机器人主流高精度谐波减速机性能比较如下表所示。
表1 主流高精度谐波减速机性能比较注:上表比较数据来自相近型号:HD :CSF-17-100中技克美:XB1-40-100传动效率测试工况:输入转速1000r/min,温度40°扭转刚度测试条件:20%额定扭矩内国内外工业机器人主流高精度摆线针轮减速机性能比较如下表所示。
表2 主流高精度RV摆线针轮减速机性能比较注:上表比较数据来自相近型号:RV:100CCYCLO:F2CF-C35传动效率测试工况:输出转速15r/min,额定扭矩2)伺服电机在伺服电机和驱动方面,目前欧系机器人的驱动部分主要由伦茨,Lust,博世力士乐等公司提供,这些欧系电机及驱动部件过载能力,动态响应好,驱动器开放性强,且具有总线接口,但是价格昂贵。而日系品牌工业机器人关键部件主要由安川,松下,三菱等公司提供,其价格相对降低,但是动态响应能力较差,开放性较差,且大部分只具备模拟量和脉冲控制方式。国内近年来也开展了大功率交流永磁同步电机及驱动部分基础研究和产业化,如哈尔滨工业大学,北京和利时,广州数控等单位,并且具备了一点的生产能力,但是其动态性能,开放性和可靠性还需要更多的实际机器人项目应用进行验证。
3)控制器在机器人控制器方面,目前国外主流机器人厂商的控制器均为在通用的多轴运动控制器平台基础上进行自主研发。目前通用的多轴控制器平台主要分为以嵌入式处理器(DSP,POWER PC)为核心的运动控制卡和以工控机加实时系统为核心的PLC系统,其代表分别是Delta Tau的PMAC卡和Beckhoff的TwinCAT系统。国内的在运动控制卡方面,固高公司已经开发出相应成熟产品,但是在机器人上的应用还相对较少。5.机器人操作系统通用的机器人操作系统(robot operating system,ROS)是为机器人而设计的标准化的构造平台,它使得每一位机器人设计师都可以使用同样的操作系统来进行机器人软件开发。ROS将推进机器人行业向硬件、软件独立的方向发展。硬件、软件独立的开发模式,曾极大促进了PC、笔记本电脑和智能手机技术的发展和快速进步。ROS的开发难度比计算机操作系统更大,计算机只需要处理一些定义非常明确的数学运算任务,而机器人需要面对更为复杂的实际运动操作。ROS提供标准操作系统服务,包括硬件抽象、底层设备控制、常用功能实现、进程间消息以及数据包管理。ROS分成两层,低层是操作系统层,高层则是用户群贡献的机器人实现不同功能的各种软件包。现有的机器人操作系统架构主要有基于linux的Ubuntu开源操作系统。另外,斯坦福大学、麻省理工学院、德国慕尼黑大学等机构已经开发出了各类ROS系统。微软机器人开发团队2007年也曾推出过一款“Windows机器人版”。6.机器人的运动规划为了提高工作效率,且使机器人能用尽可能短的时间完成特定的任务,必须有合理的运动规划。离线运动规划分为路径规划和轨迹规划。路径规划的目标是使路径与障碍物的距离尽量远同时路径的长度尽量短;轨迹规划的目的主要是机器人关节空间移动中使得机器人的运行时间尽可能短,或者能量尽可能小。轨迹规划在路径规划的基础上加入时间序列信息,对机器人执行任务时的速度与加速度进行规划,以满足光滑性和速度可控性等要求。示教再现是实现路径规划的方法之一,通过操作空间进行示教并记录示教结果,在工作过程中加以复现,现场示教直接与机器人需要完成的动作对应,路径直观且明确。缺点是需要经验丰富的操作工人,并消耗大量的时间,路径不一定最优化。为解决上述问题,可以建立机器人虚拟模型,通过虚拟的可视化操作完成对作业任务的路径规划。路径规划可在关节空间中进行。Gasparetto以五次B样条为关节轨迹的插值函数,并将加加速度的平方相对于运动时间的积分作为目标函数进行优化,以确保各个关节运动足够光滑。刘松国通过采用五次B样条对机器人的关节轨迹进行插补计算,机器人各个关节的速度、加速度端点值,可根据平滑性要求进行任意配置。另外,在关节空间的轨迹规划可避免操作空间的奇异性问题。Huo等人设计了一种关节空间中避免奇异性的关节轨迹优化算法,利用6自由度弧焊机器人在任务过程中某个关节功能上的冗余,将机器人奇异性和关节限制作为约束条件,采用TWA方法进行优化计算。关节空间路径规划与操作空间路径规划对比,具有以下优点:①避免了机器人在操作空间中的奇异性问题;②由于机器人的运动是通过控制关节电机的运动,因此在关节空间中,避免了大量的正运动学和逆运动学计算;③关节空间中各个关节轨迹便于控制的优化。
五、工业机器人分类
工业机器人按不同的方法可分下述类型:
工业机器人分类1.从机械结构来看,分为串联机器人和并联机器人。1)串联机器人的特点是一个轴的运动会改变另一个轴的坐标原点,在位置求解上,串联机器人的正解容易,但反解十分困难;2)并联机器人采用并联机构,其一个轴的运动则不会改变另一个轴的坐标原点。并联机器人具有刚度大、结构稳定、承载能力大、微动精度高、运动负荷小的优点。其正解困难反解却非常容易。串联机器人和并联机器人如图所示。
串联机器人 并联机器人2.工业机器人按操作机坐标形式分以下几类:(坐标形式是指操作机的手臂在运动时所取的参考坐标系的形式。)1)直角坐标型工业机器人其运动部分由三个相互垂直的直线移动(即PPP)组成,其工作空间图形为长方形。它在各个轴向的移动距离,可在各个坐标轴上直接读出,直观性强,易于位置和姿态的编程计算,定位精度高,控制无耦合,结构简单,但机体所占空间体积大,动作范围小,灵活性差,难与其他工业机器人协调工作。2)圆柱坐标型工业机器人其运动形式是通过一个转动和两个移动组成的运动系统来实现的,其工作空间图形为圆柱,与直角坐标型工业机器人相比,在相同的工作空间条件下,机体所占体积小,而运动范围大,其位置精度仅次于直角坐标型机器人,难与其他工业机器人协调工作。3)球坐标型工业机器人球坐标型工业机器人又称极坐标型工业机器人,其手臂的运动由两个转动和一个直线移动(即RRP,一个回转,一个俯仰和一个伸缩运动)所组成,其工作空间为一球体,它可以作上下俯仰动作并能抓取地面上或教低位置的协调工件,其位置精度高,位置误差与臂长成正比。4)多关节型工业机器人又称回转坐标型工业机器人,这种工业机器人的手臂与人一体上肢类似,其前三个关节是回转副(即RRR),该工业机器人一般由立柱和大小臂组成,立柱与大臂见形成肩关节,大臂和小臂间形成肘关节,可使大臂做回转运动和俯仰摆动,小臂做仰俯摆动。其结构最紧凑,灵活性大,占地面积最小,能与其他工业机器人协调工作,但位置精度教低,有平衡问题,控制耦合,这种工业机器人应用越来越广泛。5)平面关节型工业机器人它采用一个移动关节和两个回转关节(即PRR),移动关节实现上下运动,而两个回转关节则控制前后、左右运动。这种形式的工业机器人又称(SCARA(Seletive Compliance Assembly Robot Arm)装配机器人。在水平方向则具有柔顺性,而在垂直方向则有教大的刚性。它结构简单,动作灵活,多用于装配作业中,特别适合小规格零件的插接装配,如在电子工业的插接、装配中应用广泛。3.工业机器人按程序输入方式区分有编程输入型和示教输入型两类:1)编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。2)示教输入型的示教方法有两种:示教盒示教和操作者直接领动执行机构示教。示教盒示教由操作者用手动控制器(示教盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍。采用示教盒进行示教的工业机器人使用比较普遍,一般的工业机器人均配置示教盒示教功能,但是对于工作轨迹复杂的情况,示教盒示教并不能达到理想的效果,例如用于复杂曲面的喷漆工作的喷漆机器人。
机器人示教盒由操作者直接领动执行机构进行示教,则是按要求的动作顺序和运动轨迹操演一遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。
六、工业机器人性能评判指标表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。
⑶ 数控编程试题及答案
数控综合试题库
一填空题
1.数控系统的发展方向将紧紧围绕着 性能 、 价格 和 可靠性 三大因素进行。
2.加工中心按主轴在空间所处的状态可以分为 立式 、 卧式 和 复合式 。
3.数控机床的导轨主要有 滑动 、 滚动 、 静压 三种。
4.数控机床的类别大致有 开环 、 闭环 、 半闭环 。
5.按车床主轴位置分为 立式 和 卧式 。
6.世界上第一台数控机床是 1952 年 PARSONS公司 与 麻省理工学院 合作研究的 三 坐标 数控铣 床。
7.数控电加工机床主要类型有 点火花成型 和 线切割机床 。
8.铣削各种允许条件下,应尽量选择直径较 大 的铣刀,尽量选择刀刃较 短 的铣刀。
9.合适加工中心的零件形状有 平面 、 曲面 、 孔 、 槽等 。
10.数控加工程序的定义是按规定格式描述零件 几何形状 和 加工工艺 的数控指令集。
11.常用夹具类型有 通用 、 专用 、 组合 。
13.基点是构成轮廓的不同几何素线的 交点 或 切点 。
14.加工程序单主要由 程序体 和 注释 两大部分构成。
15.自动编程又称为 计算机辅助编程 。其定义是:利用计算机和相应的 前置 、 后置 处理程序对零件进行处理,以得到加工程序单和数控穿孔的一种编程方法。
16.按铣刀形状分有 盘铣刀 、 圆柱铣刀 、 成形铣刀 、 鼓形刀铣
17.按走丝快慢,数控线切割机床可以分为 快走丝 和 慢走丝 。
18.数控机床实现插补运算较为成熟并得到广泛应用的是 直线 插补和 圆弧 插补。
18.穿孔带是数控机床的一种控制介质,国际上通用标准是 ISO 和 EIA 两种,我国采用的标准是ISO。
19.自动编程根据编程信息的输入与计算机对信息的处理方式不同,分为以 自动编程语言 为基础的自动编程方法和以 计算机绘图语言 为基础的自动编程方法。
20.数控机床按控制运动轨迹可分为 点位控制 、 直线控制 和 轮廓控制 等几种。按控制方式又可分为 开环 、 闭环 和半闭环控制等
21.对刀点既是程序的 起点 ,也是程序的 终点 。为了提高零件的加工精度,对刀点应尽量选在零件的 设计 基准或工艺基准上。
22.在数控加工中,刀具刀位点相对于工件运动的轨迹称为 加工 路线。
23.在轮廓控制中,为了保证一定的精度和编程方便,通常需要有刀具 长度 和 半径 补偿功能。
24.编程时的数值计算,主要是计算零件的 基点 和节点 的坐标或刀具中心轨迹的 节点 和 结点 的坐标。直线段和圆弧段的交点和切点是 基点 ,逼近直线段和圆弧小段轮廓曲线的交点和切点是 节点 。
25.切削用量三要素是指主轴转速(切削速度)、切削深度 、 进给量 。对于不同的加工方法,需要不同的 切削用量 ,并应编入程序单内。
26.端铣刀的主要几何角度包括前角、后角、刃倾角 、主偏角、和副偏角。
27.工件上用于定位的表面是确定工件位置的依据,称为定位基准 。
28.切削用量中对切削温度影响最大的 切削速度 ,其次是 进给量,而 切削深度 影响最小。
29.为了降低切削温度,目前采用的主要方法是切削时冲注切削液。切削液的作用包括冷却、
润滑、防锈 和清洗作用。
30.在加工过程中,定位基准的主要作用是保证加工表面之间的相互位置精度。
31.铣削过程中所用的切削用量称为铣削用量,铣削用量包括铣削宽度、铣削深度、铣削速度、进给量。
32.钻孔使用冷却润滑时,必须在钻锋吃入金属后,再开始浇注。
33.铣刀的分类方法很多,若按铣刀的结构分类,可分为整体铣刀、镶齿铣刀和机夹式铣刀。
34.切削液的种类很多,按其性质可分为3大类:水溶液、乳化液 、切削油。
35.按划线钻孔时,为防止钻孔位置超差,应把钻头横刃磨短 ,使其定心良好或者在孔中心先钻一定位小孔。
36.当金属切削刀具的刃倾角为负值时,刀尖位于主刀刃的最高点,切屑排出时流向工件待加工 表面。
37.切削加工时,工件材料抵抗刀具切削所产生的阻力称为切削力 。
38.切削塑性材料时,切削层的金属往往要经过挤压、滑移、挤裂、和切离 4个阶段。
39.工件材料的强度和硬度较低时,前角可以选得大 些;强度和硬度较高时,前角选得小 些。
40.常用的刀具材料有碳素工具钢、合金工具钢、高速钢、硬质合金4种。
41.影响刀具寿命的主要因素有:工件材料、刀具材料、刀具几何参数、切削用量 。
42.斜楔、螺旋、凸轮等机械夹紧机构的夹紧原理是利用机械摩擦的自锁来夹紧工件 。
43.一般机床夹具主要由定位元件、夹紧元件 、对刀元件、夹具体 4个部分组成。根据需要夹具还可以含有其他组成部分,如分度装置、传动装置等。
44.采用布置恰当的6个支承点来消除工件6个自由度的方法,称为 六点定位。
45.工件在装夹过程中产生的误差称为装夹误差、定位误差及基准不重合 误差。
46.在切削塑性金属材料是,常有一些从切屑和工件上带来的金属“冷焊”在前刀面上,靠
近切削刃处形成一个硬度很高的楔块即积屑瘤
47.作用在工艺系统中的力,有切削力、夹紧力、构件及工件的重力以及运动部件产生的惯性力。
48.能消除工件6个自由度的定位方式,称为完全定位。
49.在刀具材料中,硬质合金用于切削速度很高、难加工材料的场合,制造形状较简单的刀具。
50.刀具磨钝标准有粗加工、粗加工磨钝标准两种。
51.零件加工后的实际几何参数与理想几何参数的符合程度称为加工精度。
52.工件的实际定位点数,如不能满足加工要求,少于应有的定点数,称为 欠定位。
53.在切削过程中,工件形成三个表面:①待加工表面;②加工表面;③已加工表面。
54.刀刃磨损到一定程度后需要刃磨换新刀,需要规定一个合理的磨损限度,即为耐用度。
55.若工件在夹具中定位,要使工件的定位表面与夹具的定位元件相接触,从而消除自由度。
二 判断题
1(√)安全管理是综合考虑“物”的生产管理功能和“人”的管理,目的是生产更好的产品
2(√) 通常车间生产过程仅仅包含以下四个组成部分:基本生产过程、辅助生产过程、生产技术准备过程、生产服务过程。
3(√)车间生产作业的主要管理内容是统计、考核和分析。
4(√) 车间日常工艺管理中首要任务是组织职工学习工艺文件,进行遵守工艺纪律的宣传教育,并例行工艺纪律的检查。
5(×)当数控加工程序编制完成后即可进行正式加工。
6(×)数控机床是在普通机床的基础上将普通电气装置更换成CNC控制装置。
7(√)圆弧插补中,对于整圆,其起点和终点相重合,用R编程无法定义,所以只能用圆心坐标编程。
8(√)插补运动的实际插补轨迹始终不可能与理想轨迹完全相同。
9(×)数控机床编程有绝对值和增量值编程,使用时不能将它们放在同一程序段中。
10(×)用数显技术改造后的机床就是数控机床。
11(√)G代码可以分为模态G代码和非模态G代码。
12(×)G00、G01指令都能使机床坐标轴准确到位,因此它们都是插补指令。
13(√)圆弧插补用半径编程时,当圆弧所对应的圆心角大于180º时半径取负值。
14(×)不同的数控机床可能选用不同的数控系统,但数控加工程序指令都是相同的。
15(×)数控机床按控制系统的特点可分为开环、闭环和半闭环系统。
16(√)在开环和半闭环数控机床上,定位精度主要取决于进给丝杠的精度。
17(×)点位控制系统不仅要控制从一点到另一点的准确定位,还要控制从一点到另一点的路径。
18(√)常用的位移执行机构有步进电机、直流伺服电机和交流伺服电机。
19(√)通常在命名或编程时,不论何种机床,都一律假定工件静止刀具移动。
20(×)数控机床适用于单品种,大批量的生产。
21(×)一个主程序中只能有一个子程序。
22(×)子程序的编写方式必须是增量方式。
23(×)数控机床的常用控制介质就是穿孔纸带。
24(√)程序段的顺序号,根据数控系统的不同,在某些系统中可以省略的。
25(×)绝对编程和增量编程不能在同一程序中混合使用。
26(×)数控机床在输入程序时,不论何种系统座标值不论是整数和小数都不必加入小数点。
27(√)RS232主要作用是用于程序的自动输入。
28(√)车削中心必须配备动力刀架。
29(×)Y坐标的圆心坐标符号一般用K表示。
30(√)非模态指令只能在本程序段内有效。
31(×)X坐标的圆心坐标符号一般用K表示。
32(×)数控铣床属于直线控制系统。
33(√)采用滚珠丝杠作为X轴和Z轴传动的数控车床机械间隙一般可忽略不计。
34(√)旧机床改造的数控车床,常采用梯形螺纹丝杠作为传动副,其反向间隙需事先测量出来进行补偿。
35(√)顺时针圆弧插补(G02)和逆时针圆弧插补(G03)的判别方向是:沿着不在圆弧平面内的坐标轴正方向向负方向看去,顺时针方向为G02,逆时针方向为G03。
36(×)顺时针圆弧插补(G02)和逆时针圆弧插补(G03)的判别方向是:沿着不在圆弧平面内的坐标轴负方向向正方向看去,顺时针方向为G02,逆时针方向为G03。
37(√)伺服系统的执行机构常采用直流或交流伺服电动机。
38(√)直线控制的特点只允许在机床的各个自然坐标轴上移动,在运动过程中进行加工。
39(×)数控车床的特点是Z轴进给1mm,零件的直径减小2mm。
40(×)只有采用CNC技术的机床才叫数控机床。
41(√)数控机床按工艺用途分类,可分为数控切削机床、数控电加工机床、数控测量机等。
42(×)数控机床按控制坐标轴数分类,可分为两坐标数控机床、三坐标数控机床、多坐标数控机床和五面加工数控机床等。
43(×)数控车床刀架的定位精度和垂直精度中影响加工精度的主要是前者。
44(×)最常见的2轴半坐标控制的数控铣床,实际上就是一台三轴联动的数控铣床。
45(√)四坐标数控铣床是在三坐标数控铣床上增加一个数控回转工作台。
46(√)液压系统的输出功率就是液压缸等执行元件的工作功率。
47(×)液压系统的效率是由液阻和泄漏来确定的。
48(√)调速阀是一个节流阀和一个减压阀串联而成的组合阀。
49(×)液压缸的功能是将液压能转化为机械能。
50(×)数控铣床加工时保持工件切削点的线速度不变的功能称为恒线速度控制。
51(√)由存储单元在加工前存放最大允许加工范围,而当加工到约定尺寸时数控系统能够自动停止,这种功能称为软件形行程限位。
52(√)点位控制的特点是,可以以任意途径达到要计算的点,因为在定位过程中不进行加工。
53(√)数控车床加工球面工件是按照数控系统编程的格式要求,写出相应的圆弧插补程序段。
54(√)伺服系统包括驱动装置和执行机构两大部分。
55(√)不同结构布局的数控机床有不同的运动方式,但无论何种形式,编程时都认为刀具相对于工件运动。
56(×)不同结构布局的数控机床有不同的运动方式,但无论何种形式,编程时都认为工件相对于刀具运动。
57(×)一个主程序调用另一个主程序称为主程序嵌套。
58(×)数控车床的刀具功能字T既指定了刀具数,又指定了刀具号。
59(×)数控机床的编程方式是绝对编程或增量编程。
60(√)数控机床用恒线速度控制加工端面、锥度和圆弧时,必须限制主轴的最高转速。
61(×)螺纹指令G32 X41.0 W-43.0 F1.5是以每分钟1.5mm的速度加工螺纹。
62(×)经试加工验证的数控加工程序就能保证零件加工合格。
63(√)数控机床的镜象功能适用于数控铣床和加工中心。
64(×)数控机床加工时选择刀具的切削角度与普通机床加工时是不同的。
65(×)数控铣床加工时保持工件切削点的线速度不变的功能称为恒线速度控制。
66(×)在数控加工中,如果圆弧指令后的半径遗漏,则圆弧指令作直线指令执行。
67(√)车床的进给方式分每分钟进给和每转进给两种,一般可用G94和G95区分。
68(×) G00为前置刀架式数控车床加工中的瞬时针圆弧插补指令。
69(×)G03为后置刀架式数控车床加工中的逆时针圆弧插补指令。
70(×)所有数控机床加工程序的结构均由引导程序、主程序及子程序组成。
71(×)数控装置接到执行的指令信号后,即可直接驱动伺服电动机进行工作。
72(×)点位控制数控机床除了控制点到点的准确位置外,对其点到点之间的运动轨迹也有一定的要求。
73(×)数控机床的坐标规定与普通机床相同,均是由左手直角笛卡尔坐标系确定。
74(×)G00、G02、G03、G04、G90均属于模态G指令。
75(√)ISO标准规定G功能代码和M功能代码规定从00—99共100种。
76(√)螺纹车刀属于尖形车刀类型。
77(√)圆弧形车刀的切削刃上有无数个连续变化位置“刀尖”。
78(√)数控车床上的自动转位刀架是一种最简单的自动换刀设备。
79(√)在数值计算车床过程中,已按绝对坐标值计算出某运动段的起点坐标及终点坐标,以增量尺寸方式表示时,其换算公式:增量坐标值=终点坐标值-起点坐标。
80(√)一个尺寸链中一定只能一个封闭环。
81(√)在数控机床上加工零件,应尽量选用组合夹具和通用夹具装夹工件。避免采用专用夹具。
82(×)保证数控机床各运动部件间的良好润滑就能提高机床寿命。
83(√)数控机床加工过程中可以根据需要改变主轴速度和进给速度。
84(√)车床主轴编码器的作用是防止切削螺纹时乱扣。
85(×)跟刀架是固定在机床导轨上来抵消车削时的径向切削力的。
86(×)切削速度增大时,切削温度升高,刀具耐用度大。
87(×)数控机床进给传动机构中采用滚珠丝杠的原因主要是为了提高丝杠精度。
88(×)数控车床可以车削直线、斜线、圆弧、公制和英制螺纹、圆柱管螺纹、圆锥螺纹,但是不能车削多头螺纹。
89(×)平行度的符号是 //,垂直度的符号是 ┸ , 圆度的符号是 〇。
90(√)数控机床为了避免运动件运动时出现爬行现象,可以通过减少运动件的摩擦
来实现。
91(×)切削中,对切削力影响较小的是前角和主偏角。
92(×)同一工件,无论用数控机床加工还是用普通机床加工,其工序都一样。
93(×)数控机床的定位精度与数控机床的分辨率精度是一致的。
95(√)刀具半径补偿是一种平面补偿,而不是轴的补偿。
96(√)固定循环是预先给定一系列操作,用来控制机床的位移或主轴运转。
97(√)数控车床的刀具补偿功能有刀尖半径补偿与刀具位置补偿。
98(×)刀具补偿寄存器内只允许存入正值。
99(×)数控机床的机床坐标原点和机床参考点是重合的。
100(×)机床参考点在机床上是一个浮动的点。
101(√)外圆粗车循环方式适合于加工棒料毛坯除去较大余量的切削。
102(√)固定形状粗车循环方式适合于加工已基本铸造或锻造成型的工件。
102(×)外圆粗车循环方式适合于加工已基本铸造或锻造成型的工件。
103(√)刀具补偿功能包括刀补的建立、刀补的执行和刀补的取消三个阶段。
104(×)刀具补偿功能包括刀补的建立和刀补的执行二个阶段。
105(×)数控机床配备的固定循环功能主要用于孔加工。
106(√)数控铣削机床配备的固定循环功能主要用于钻孔、镗孔、攻螺纹等。
107(×)编制数控加工程序时一般以机床坐标系作为编程的坐标系。
108(√)机床参考点是数控机床上固有的机械原点,该点到机床坐标原点在进给坐标轴方向上的距离可以在机床出厂时设定。
109(√)因为毛坯表面的重复定位精度差,所以粗基准一般只能使用一次。
110(×)表面粗糙度高度参数Ra值愈大,表示表面粗糙度要求愈高;Ra值愈小表示表面粗糙度要求愈低。
111(√)数控机床的位移检测装置主要有直线型和旋转型。
112(×)基本型群钻是群钻的一种,即在标准麻花钻的基础上进行修磨,形成“六尖一七刃的结构特征。
113(√)陶瓷的主要成分是氧化铝,其硬度、耐热性和耐磨性均比硬质合金高。
114(×)车削外圆柱面和车削套类工件时,它们的切削深度和进给量通常是相同的。
115(√)热处理调质工序一般安排在粗加工之后,半精加工之前进行。
116(√)为了保证工件达到图样所规定的精度和技术要求,夹具上的定位基准应与工件上设计基准、测量基准尽可能重合。
117(√)为了防止工件变形,夹紧部位要与支承对应,不能在工件悬空处夹紧。
118(×)在批量生产的情况下,用直接找正装夹工件比较合适。
119(√)刀具切削部位材料的硬度必须大于工件材料的硬度。
120(×)加工零件在数控编程时,首先应确定数控机床,然后分析加工零件的工艺特性。
121(×)数控切削加工程序时一般应选用轴向进刀。
122(×)因为试切法的加工精度较高,所以主要用于大批、大量生产。
123(×)具有独立的定位作用且能限制工件的自由度的支承称为辅助支承。
124(√)切削用量中,影响切削温度最大的因素是切削速度。
125(√)积屑瘤的产生在精加工时要设法避免,但对粗加工有一定的好处。
126(×)硬质合金是一种耐磨性好。耐热性高,抗弯强度和冲击韧性都较高的一种刀具材料。
127(×)在切削时,车刀出现溅火星属正常现象,可以继续切削。
128(×)刃磨车削右旋丝杠的螺纹车刀时,左侧工作后角应大于右侧工作后角。
129(√)套类工件因受刀体强度、排屑状况的影响,所以每次切削深度要少一点,进给量要慢一点。
130(√)切断实心工件时,工件半径应小于切断刀刀头长度。
131(√)切断空心工件时,工件壁厚应小于切断刀刀头长度。
132(×)数控机床对刀具的要求是能适合切削各种材料、能耐高温且有较长的使用寿命。
133(√)数控机床对刀具材料的基本要求是高的硬度、高的耐磨性、高的红硬性和足够的强度7和韧性。
134(√)工件定位时,被消除的自由度少于六个,但完全能满足加工要求的定位称不完全定位。
135(×)定位误差包括工艺误差和设计误差。
136(×)数控机床中MDI是机床诊断智能化的英文缩写。
137(×)数控机床中CCW代表顺时针方向旋转,CW代表逆时针方向旋转。
138(×)一个完整尺寸包含的四要素为尺寸线、尺寸数字、尺寸公差和箭头等四项要素。
139(√)高速钢刀具具有良好的淬透性、较高的强度、韧性和耐磨性。
140(×)长V形块可消除五个自由度。短的V形块可消除二个自由度。
141(√)长的V形块可消除四个自由度。短的V形块可消除二个自由度。
142(×)高速钢是一种含合金元素较多的工具钢,由硬度和熔点很高的碳化物和金属粘结剂组成。
143(√)零件图中的尺寸标注要求是完整、正确、清晰、合理。
144(√)硬质合金是用粉末冶金法制造的合金材料,由硬度和熔点很高的碳化物和
金属粘结剂组成。
145(√)工艺尺寸链中,组成环可分为增环与减环。