‘壹’ java中volatile修饰的变量有什么特征
volatile是一个类型修饰符,它是被设计用来修饰被不同线程访问和修改的变量,可以被异步的线程所修改。
final必须对它赋予初值并且不能修改它。
对比就知道两个修饰符是冲突的,放一起是要干什么呢?
‘贰’ java 的关键字有哪些
转的
Abstract 抽象的
一个Java语言中的关键字,用在类的声明中来指明一个类是不能被实例化的,但是可以被其它类继承。一个抽象类可以使用抽象方法,抽象方法不需要实现,但是需要在子类中被实现
break
一个Java的关键字,用来改变程序执行流程,立刻从当前语句的下一句开始执行从。如果后面跟有一个标签,则从标签对应的地方开始执行
case
Java语言的关键字,用来定义一组分支选择,如果某个值和switch中给出的值一样,就会从该分支开始执行。
catch
Java的一个关键字,用来声明当try语句块中发生运行时错误或非运行时异常时运行的一个块。
char
Java语言的一个关键字,用来定义一个字符类型
continue
一个Java的关键字,用来打断当前循环过程,从当前循环的最后重新开始执行,如果后面跟有一个标签,则从标签对应的地方开始执行。
do
一个Java语言的关键字,用来声明一个循环,这个循环的结束条件可以通过while关键字设置
double
一个Java语言的关键字,用来定义一个double类型的变量
else
一个Java语言的关键字,如果if语句的条件不满足就会执行该语句。
final
一个Java语言的关键字。你只能定义一个实体一次,以后不能改变它或继承它。更严格的讲:一个final修饰的类不能被子类化,一个final修饰的方法不能被重写,一个final修饰的变量不能改变其初始值。
finally
一个Java语言的关键字,用来执行一段代码不管在前面定义的try语句中是否有异常或运行时错误发生。
float
一个Java语言的关键字,用来定义一个浮点数变量
for
一个Java语言的关键字,用来声明一个循环。程序员可以指定要循环的语句,推出条件和初始化变量。
if
Java编程语言的一个关键字,用来生成一个条件测试,如果条件为真,就执行if下的语句。
implements
Java(TM)编程语言的一个关键字,在类的声明中是可选的,用来指明当前类实现的接口。
import
Java(TM)编程语言的一个关键字,在源文件的开始部分指明后面将要引用的一个类或整个包,这样就不必在使用的时候加上包的名字。
instanceof
一个二操作数的Java(TM)语言关键字,用来测试第一个参数的运行时类型是否和第二个参数兼容。
int
Java(TM)的一个关键字,用来定义一个整形变量
Java(TM)的一个关键字,用来定义一系列的方法和常量。它可以被类实现,通过implements关键字。
long
Java语言的一个关键字,用来定义一个long类型的变量。
private
Java语言的一个关键字,用在方法或变量的声中。它表示这个方法或变量只能被这个类的其它元素所访问。
protected
Java语言的一个关键字,在方法和变量的声明中使用,它表示这个方法或变量只能被同一个类中的,子类中的或者同一个包中的类中的元素所访问。
public
Java语言的一个关键字,在方法和变量的声明中使用,它表示这个方法或变量能够被其它类中的元素访问。
return
Java语言的一个关键字,用来结束一个方法的执行。它后面可以跟一个方法声明中要求的值。
short
Java语言的关键字,用来定义一个short类型的变量。
static
Java语言的关键字,用来定义一个变量为类变量。类只维护一个类变量的拷贝,不管该类当前有多少个实例。"static" 同样能够用来定义一个方法为类方法。类方法通过类名调用而不是特定的实例,并且只能操作类变量。
this
Java语言的关键字,用来代表它出现的类的一个实例。this可以用来访问类变量和类方法。
throw
Java语言的关键字,允许用户抛出一个exception对象或者任何实现throwable的对象
throws
Java语言的关键字,用在方法的声明中来说明哪些异常这个方法是不处理的,而是提交到程序的更高一层。
transient
Java语言的关键字,用来表示一个域不是该对象串行化的一部分。当一个对象被串行化的时候,transient型变量的值不包括在串行化的表示中,然而非transient型的变量是被包括进去的。
try
Java语言的关键字,用来定义一个可能抛出异常语句块。如果一个异常被抛出,一个可选的catch语句块会处理try语句块中抛出的异常。同时,一个finally语句块会被执行,无论一个异常是否被抛出。
void
Java语言的关键字,用在Java语言的方法声明中说明这个方法没有任何返回值。"void"也可以用来表示一句没有任何功能的语句。
volatile
Java语言的关键字,用在变量的声明中表示这个变量是被同时运行的几个线程异步修改的。
while
Java语言的一个关键字,用来定义一段反复执行的循环语句。循环的退出条件是while语句的一部分。
关于break和continue
continue语句与break语句相关,但较少用到。continue语句用于使其所在的for、while或do-while语句开始下一次循环。在while与do-while语句中,continue语句的执行意味着立即执行测试部分;在for循环语句中,continue语句的执行则意味着使控制传递到增量部分。
‘叁’ 谁能真正整明白java volatile 关键字
四.深入剖析volatile关键字
在前面讲述了很多东西,其实都是为讲述volatile关键字作铺垫,那么接下来我们就进入主题。
1.volatile关键字的两层语义
一旦一个共享变量(类的成员变量、类的静态成员变量)被volatile修饰之后,那么就具备了两层语义:
1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的。
2)禁止进行指令重排序。
先看一段代码,假如线程1先执行,线程2后执行:
这段代码是很典型的一段代码,很多人在中断线程时可能都会采用这种标记办法。但是事实上,这段代码会完全运行正确么?即一定会将线程中断么?不一定,也许在大多数时候,这个代码能够把线程中断,但是也有可能会导致无法中断线程(虽然这个可能性很小,但是只要一旦发生这种情况就会造成死循环了)。
下面解释一下这段代码为何有可能导致无法中断线程。在前面已经解释过,每个线程在运行过程中都有自己的工作内存,那么线程1在运行的时候,会将stop变量的值拷贝一份放在自己的工作内存当中。
那么当线程2更改了stop变量的值之后,但是还没来得及写入主存当中,线程2转去做其他事情了,那么线程1由于不知道线程2对stop变量的更改,因此还会一直循环下去。
但是用volatile修饰之后就变得不一样了:
第一:使用volatile关键字会强制将修改的值立即写入主存;
第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量stop的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效);
第三:由于线程1的工作内存中缓存变量stop的缓存行无效,所以线程1再次读取变量stop的值时会去主存读取。
那么在线程2修改stop值时(当然这里包括2个操作,修改线程2工作内存中的值,然后将修改后的值写入内存),会使得线程1的工作内存中缓存变量stop的缓存行无效,然后线程1读取时,发现自己的缓存行无效,它会等待缓存行对应的主存地址被更新之后,然后去对应的主存读取最新的值。
那么线程1读取到的就是最新的正确的值。
2.volatile保证原子性吗?
从上面知道volatile关键字保证了操作的可见性,但是volatile能保证对变量的操作是原子性吗?
下面看一个例子:
大家想一下这段程序的输出结果是多少?也许有些朋友认为是10000。但是事实上运行它会发现每次运行结果都不一致,都是一个小于10000的数字。
可能有的朋友就会有疑问,不对啊,上面是对变量inc进行自增操作,由于volatile保证了可见性,那么在每个线程中对inc自增完之后,在其他线程中都能看到修改后的值啊,所以有10个线程分别进行了1000次操作,那么最终inc的值应该是1000*10=10000。
这里面就有一个误区了,volatile关键字能保证可见性没有错,但是上面的程序错在没能保证原子性。可见性只能保证每次读取的是最新的值,但是volatile没办法保证对变量的操作的原子性。
在前面已经提到过,自增操作是不具备原子性的,它包括读取变量的原始值、进行加1操作、写入工作内存。那么就是说自增操作的三个子操作可能会分割开执行,就有可能导致下面这种情况出现:
假如某个时刻变量inc的值为10,
线程1对变量进行自增操作,线程1先读取了变量inc的原始值,然后线程1被阻塞了;
然后线程2对变量进行自增操作,线程2也去读取变量inc的原始值,由于线程1只是对变量inc进行读取操作,而没有对变量进行修改操作,所以不会导致线程2的工作内存中缓存变量inc的缓存行无效,所以线程2会直接去主存读取inc的值,发现inc的值时10,然后进行加1操作,并把11写入工作内存,最后写入主存。
然后线程1接着进行加1操作,由于已经读取了inc的值,注意此时在线程1的工作内存中inc的值仍然为10,所以线程1对inc进行加1操作后inc的值为11,然后将11写入工作内存,最后写入主存。
那么两个线程分别进行了一次自增操作后,inc只增加了1。
解释到这里,可能有朋友会有疑问,不对啊,前面不是保证一个变量在修改volatile变量时,会让缓存行无效吗?然后其他线程去读就会读到新的值,对,这个没错。这个就是上面的happens-before规则中的volatile变量规则,但是要注意,线程1对变量进行读取操作之后,被阻塞了的话,并没有对inc值进行修改。然后虽然volatile能保证线程2对变量inc的值读取是从内存中读取的,但是线程1没有进行修改,所以线程2根本就不会看到修改的值。
根源就在这里,自增操作不是原子性操作,而且volatile也无法保证对变量的任何操作都是原子性的。
把上面的代码改成以下任何一种都可以达到效果:
采用synchronized:
采用Lock:
public class Test {public int inc = 0;Lock lock = new ReentrantLock();public void increase() {lock.lock();try {inc++;} finally{lock.unlock();}}public static void main(String[] args) {final Test test = new Test();for(int i=0;i<10;i++){new Thread(){public void run() {for(int j=0;j<1000;j++)test.increase();};}.start();}while(Thread.activeCount()>1) //保证前面的线程都执行完Thread.yield();System.out.println(test.inc);}}采用AtomicInteger:
前面举这个例子的时候,提到有可能语句2会在语句1之前执行,那么久可能导致context还没被初始化,而线程2中就使用未初始化的context去进行操作,导致程序出错。
这里如果用volatile关键字对inited变量进行修饰,就不会出现这种问题了,因为当执行到语句2时,必定能保证context已经初始化完毕。
4.volatile的原理和实现机制
前面讲述了源于volatile关键字的一些使用,下面我们来探讨一下volatile到底如何保证可见性和禁止指令重排序的。
下面这段话摘自《深入理解Java虚拟机》:
“观察加入volatile关键字和没有加入volatile关键字时所生成的汇编代码发现,加入volatile关键字时,会多出一个lock前缀指令”
lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),内存屏障会提供3个功能:
1)它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成;
2)它会强制将对缓存的修改操作立即写入主存;
3)如果是写操作,它会导致其他CPU中对应的缓存行无效。
‘肆’ Java 线程同步几种方式
(1)同步方法:
即有synchronized关键字修饰的方法。 由于java的每个对象都有一个内置锁,当用此关键字修饰方法时,内置锁会保护整个方法。在调用该方法前,需要获得内置锁,否则就处于阻塞状态。
(2)同步代码块
即有synchronized关键字修饰的语句块。被该关键字修饰的语句块会自动被加上内置锁,从而实现同步
(3)使用特殊域变量(Volatile)实现线程同步
a.volatile关键字为域变量的访问提供了一种免锁机制
b.使用volatile修饰域相当于告诉虚拟机该域可能会被其他线程更新
c.因此每次使用该域就要重新计算,而不是使用寄存器中的值
d.volatile不会提供任何原子操作,它也不能用来修饰final类型的变量
(4)使用重入锁实现线程同步
在JavaSE5.0中新增了一个java.util.concurrent包来支持同步。ReentrantLock类是可重入、互斥、实现了Lock接口的锁, 它与使用synchronized方法和快具有相同的基本行为和语义,并且扩展了其能力。
(5)使用局部变量实现线程同步
‘伍’ java 程序中怎么保证多线程的运行安全
2.1.读一致性
Java 中针对上述“读不安全”的问题提供了关键字 volatile 来解决问题,被 volatile 修饰的成员变量,在内容发生更改的时候,会通知所有线程去主内存更新最新的值,这样就解决了读不安全的问题,实现了读一致性。
但是,读一致性是无法解决写一致性的,虽然能够使得每个线程都能及时获取到最新的值,但是1.1中的写一致性问题还是会存在。
既然如此,Java 为啥还要提供 volatile 关键字呢?这并非多余的存在,在某些场景下只需要读一致性的话,这个关键字就能够满足需求而且性能相对还不错,因为其他的能够保证“读写”都一直的办法,多多少少存在一些牺牲。
2.2.写一致性
Java 提供了三种方式来保证读写一致性,分别是互斥锁、自旋锁、线程隔离。
2.2.1.互斥锁
互斥锁只是一个锁概念,在其他场景也叫做独占锁、悲观锁等,其实就是一个意思。它是指线程之间是互斥的,某一个线程获取了某个资源的锁,那么其他线程就只能睡眠等待。
在 Java 中互斥锁的实现一般叫做同步线程锁,关键字 synchronized,它锁住的范围是它修饰的作用域,锁住的对象是:当前对象(对象锁)或类的全部对象(类锁)——锁释放前,其他线程必将阻塞,保证锁住范围内的操作是原子性的,而且读取的数据不存在一致性问题。
对象锁:当它修饰方法、代码块时,将会锁住当前对象
类锁:修饰类、静态方法时,则是锁住类的所有对象
注意:锁住的永远是对象,锁住的范围永远是 synchronized 关键字后面的花括号划定的代码域。
2.2.2.自旋锁
自旋锁也只是一个锁概念,在其他场景也叫做乐观锁等。
自旋锁本质上是不加锁,而是通过对比旧数据来决定是否更新: