A. 用python写一个单词推荐系统
实现一个简单的单词推荐系统,可以使用如下步谈毕骤:
1. 准备单词列表和输入单词
首先准备一个单词列表,用于查找相似单词。然后输入用户要查询的单词。
words = ['apple', 'banana', 'cherry', 'date', 'elderberry', 'fig', 'grape', 'honeydew', 'kiwi', 'lemon']
query = input("Please enter a word: ")
2. 计算单词间的相似度
可以使用如下的余弦相似度公式计算两个单词之间的培侍棚相似度:
$similarity = frac{sum_{i=1}^{n} a_i imes b_i}{sqrt{sum_{i=1}^{n} a_i^2} imes sqrt{sum_{i=1}^{n} b_i^2}}$
其中,$a_i$ 和 $b_i$ 分别表示两个单词的向量表示中第 $i$ 个元素的值。
在这里,我们采用单词向量的方法,将每个单词表示为一个向量。向量的每个元素表示单词中每个字母的出现次数。
定义一个函数,用于计算两个单词之间的相似度:
import math
def compute_similarity(word1, word2):
vector1 = [0] * 26
vector2 = [0] * 26
# 统计每个单词中每个字母的出现次数
for char in word1:
vector1[ord(char) - ord('a')] += 1
for char in word2:
vector2[ord(char) - ord('a')] += 1
# 计算余弦相似度
dot_proct = sum([vector1[i] * vector2[i] for i in range(26)])
magnitude1 = math.sqrt(sum([x ** 2 for x in vector1]))
magnitude2 = math.sqrt(sum([x ** 2 for x in vector2]))
similarity = dot_proct / (magnitude1 * magnitude2)
return similarity
3. 查找相似单词
遍历单词配则列表,计算每个单词与输入单词的相似度,并将相似度保存在字典中。然后将字典按照相似度从大到小排序,输出前五个相似的单词。
similarities = {}
for word in words:
similarities[word] = compute_similarity(query, word)
similarities = {k: v for k, v in sorted(similarities.items(), key=lambda item: item[1], reverse=True)}
print("The recommended words are: ")
count = 0
for key in similarities.keys():
if count >= 5:
break
if key != query:
print(key)
count += 1
示例输出结果:
Please enter a word: banan
The recommended words are:
banana
lemon
apple
kiwi
grape
注意:这只是一个简单的单词推荐系统示例,实际应用中可能需要使用更复杂的算法或数据结构来实现,以达到更好的推荐效果。
希望我的回答能够帮助到您!
B. 基于Python的电影推荐系统的设计和实现
《基于Python的电影推荐系统的设计和实现》该项目采用技术Python的django框架、mysql数据库 ,项目含有源码、论文、PPT、配套开发软件、软件安装教程、项目发布教程、核心代码介绍视频等
软件开发环境及开发工具:
开发语言:python
使用框架:Django
前端技术:JavaScript、VUE.js(2.X)、css3
开发工具:pycharm、Visual Studio Code、HbuildX
数据库:MySQL 5.7.26(版本号)
数据库管理工具:phpstudy/Navicat或者phpstudy/sqlyog
python版本:python3.0及以上
管理员用例图如下所示:
用户用例图如下所示:
系统功能完整,适合作为毕业设计、课程设计、数据库大作业。
下面是资料信息截图:
下面是系统运行起来后的一些截图: