导航:首页 > 编程语言 > 曼哈顿距离和欧式距离python

曼哈顿距离和欧式距离python

发布时间:2024-10-24 01:39:16

Ⅰ 常见的相似度度量算法




本文目录:




  定义在两个向量(两个点)上:点x和点y的欧式距离为:

  常利用欧几里得距离描述相似度时,需要取倒数归一化,sim = 1.0/(1.0+distance),利用numpy实现如下:

python实现欧式距离

  从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源, 曼哈顿距离也称为城市街区距离(City Block distance)。

  (1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离

  (2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的曼哈顿距离

   python实现曼哈顿距离:


  国际象棋玩过么?国王走一步能够移动到相邻的8个方格中的任意一个。那么国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?自己走走试试。你会发现最少步数总是max( | x2-x1 | , | y2-y1 | ) 步 。有一种类似的一种距离度量方法叫切比雪夫距离。

  (1)二维平面两点a(x1,y1)与b(x2,y2)间的切比雪夫距离

  (2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的切比雪夫距离

   python实现切比雪夫距离:


  闵氏距离不是一种距离,而是一组距离的定义。

  两个n维变量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

  其中p是一个变参数。

  当p=1时,就是曼哈顿距离

  当p=2时,就是欧氏距离

  当p→∞时,就是切比雪夫距离

  根据变参数的不同,闵氏距离可以表示一类的距离。

  闵氏距离,包括曼哈顿距离、欧氏距离和切比雪夫距离都存在明显的缺点。

  举个例子:二维样本(身高,体重),其中身高范围是150 190,体重范围是50 60,有三个样本:a(180,50),b(190,50),c(180,60)。那么a与b之间的闵氏距离(无论是曼哈顿距离、欧氏距离或切比雪夫距离)等于a与c之间的闵氏距离,但是身高的10cm真的等价于体重的10kg么?因此用闵氏距离来衡量这些样本间的相似度很有问题。

  简单说来,闵氏距离的缺点主要有两个:

  (1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了。

  (2)没有考虑各个分量的分布(期望,方差等)可能是不同的。


  标准欧氏距离的定义

  标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:

  而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是:

  标准化后的值 = ( 标准化前的值 - 分量的均值 ) /分量的标准差

  经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式:

  如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。


  有M个样本向量X1~Xm,协方差矩阵记为S,均值记为向量μ,则其中样本向量X到u的马氏距离表示为:

  而其中向量Xi与Xj之间的马氏距离定义为:

  若协方差矩阵是单位矩阵(各个样本向量之间独立同分布),则公式就成了:

  也就是欧氏距离了。

  若协方差矩阵是对角矩阵,公式变成了标准化欧氏距离。

  马氏距离的优缺点:量纲无关,排除变量之间的相关性的干扰。


  几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。

  在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

  两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦

  类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

  即:

  夹角余弦取值范围为[-1,1]。夹角余弦越大表示两个向量的夹角越小,夹角余弦越小表示两向量的夹角越大。当两个向量的方向重合时夹角余弦取最大值1,当两个向量的方向完全相反夹角余弦取最小值-1。

python实现余弦相似度:


  两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。

  应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

python实现汉明距离:


  两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

  杰卡德相似系数是衡量两个集合的相似度一种指标。

  与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:

  杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。

  可将杰卡德相似系数用在衡量样本的相似度上。

  样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

  p :样本A与B都是1的维度的个数

  q :样本A是1,样本B是0的维度的个数

  r :样本A是0,样本B是1的维度的个数

  s :样本A与B都是0的维度的个数

  这里p+q+r可理解为A与B的并集的元素个数,而p是A与B的交集的元素个数。

  而样本A与B的杰卡德距离表示为:


  皮尔逊相关系数即为相关系数 ( Correlation coefficient )与相关距离(Correlation distance)

  相关系数的定义

  相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。








1. 机器学习中的相似性度量

2. 推荐算法入门(1)相似度计算方法大全

3. Python Numpy计算各类距离

4. 皮尔逊积矩相关系数

Ⅱ Python编程题:编程求两点之间的曼哈顿距离


def My_abs(num):
if num < 0:
num *= -1
return num


print(abs(-5))

x1,y1=eval(input("输入A点坐标,以逗号分隔:"))
x2,y2=eval(input("输入B点坐标,以逗号分隔:"))


# 计算曼哈顿距离的函数
def getManhattanDistance(x1, y1, x2, y2):
return My_abs(x1 - x2) + My_abs(y1 - y2)


# 调用并输出计算的曼哈顿距离
print(getManhattanDistance(x1, y1, x2, y2))



abs在Python中有了,然后我就命名成了My_abs。

备注也都打好了。

折柳成荫写的是C,soulofbug写的是python

阅读全文

与曼哈顿距离和欧式距离python相关的资料

热点内容
华为荣耀系统编译 浏览:730
看板块app哪个好用 浏览:666
java即时编译结果怎么保存 浏览:907
java工程师在深圳 浏览:656
手机sql编译软件 浏览:524
外网服务器地址购买 浏览:994
空调压缩机电容价格 浏览:381
小程序选什么云服务器 浏览:656
如何把java编译回中文 浏览:777
天联软件服务器地址是什么 浏览:964
stc单片机加密 浏览:140
小程序地产广告源码 浏览:542
消费者信息加密私域 浏览:431
程序员开发团队可以怎么创业 浏览:925
设备共享服务器是什么意思 浏览:126
java符号类型 浏览:331
redis客户端java 浏览:214
javatn 浏览:278
应用宝哪里下载王卡免流量app 浏览:235
uv7代喷头加密与不加密 浏览:467