导航:首页 > 编程语言 > 最大m子段乘积Python

最大m子段乘积Python

发布时间:2024-12-06 08:05:25

python如下报错是什么意思

要把代码发现来才知道,以下是常见的错误
下面终于要讲到当你用到更多的Python的功能(数据类型,函数,模块,类等等)时可能碰到的问题了。由于篇幅有限,这里尽量精简,尤其是对一些高级的概念。要想了解更多的细节,敬请阅读Learning Python, 2nd Edition的“小贴士”以及“Gotchas”章节。

打开文件的调用不使用模块搜索路径
当你在Python中调用open()来访问一个外部的文件时,Python不会使用模块搜索路径来定位这个目标文件。它会使用你提供的绝对路径,或者假定这个文件是在当前工作目录中。模块搜索路径仅仅为模块加载服务的。
不同的类型对应的方法也不同
列表的方法是不能用在字符串上的,反之亦然。通常情况下,方法的调用是和数据类型有关的,但是内部函数通常在很多类型上都可以使用。举个例子来说,列表的reverse方法仅仅对列表有用,但是len函数对任何具有长度的对象都适用
不能直接改变不可变数据类型
记住你没法直接的改变一个不可变的对象(例如,元组,字符串):

T = (1, 2, 3)
T[2] = 4 # 错误

用切片,联接等构建一个新的对象,并根据需求将原来变量的值赋给它。因为Python会自动回收没有用的内存,因此这没有看起来那么浪费:

T = T[:2] + (4,) # 没问题了: T 变成了 (1, 2, 4)

使用简单的for循环而不是while或者range
当你要从左到右遍历一个有序的对象的所有元素时,用简单的for循环(例如,for x in seq:)相比于基于while-或者range-的计数循环而言会更容易写,通常运行起来也更快。除非你一定需要,尽量避免在一个for循环里使用range:让Python来替你解决标号的问题。在下面的例子中三个循环结构都没有问题,但是第一个通常来说更好;在Python里,简单至上。

S = "lumberjack"

for c in S: print c # 最简单

for i in range(len(S)): print S[i] # 太多了

i = 0 # 太多了
while i < len(S): print S[i]; i += 1

不要试图从那些会改变对象的函数得到结果
诸如像方法list.append()和list.sort()一类的直接改变操作会改变一个对象,但不会将它们改变的对象返回出来(它们会返回None);正确的做法是直接调用它们而不要将结果赋值。经常会看见初学者会写诸如此类的代码:

mylist = mylist.append(X)

目的是要得到append的结果,但是事实上这样做会将None赋值给mylist,而不是改变后的列表。更加特别的一个例子是想通过用排序后的键值来遍历一个字典里的各个元素,请看下面的例子:

D = {...}
for k in D.keys().sort(): print D[k]

差一点儿就成功了——keys方法会创建一个keys的列表,然后用sort方法来将这个列表排序——但是因为sort方法会返回None,这个循环会失败,因为它实际上是要遍历None(这可不是一个序列)。要改正这段代码,将方法的调用分离出来,放在不同的语句中,如下:

Ks = D.keys()
Ks.sort()
for k in Ks: print D[k]

只有在数字类型中才存在类型转换
在Python中,一个诸如123+3.145的表达式是可以工作的——它会自动将整数型转换为浮点型,然后用浮点运算。但是下面的代码就会出错了:

S = "42"
I = 1
X = S + I # 类型错误

这同样也是有意而为的,因为这是不明确的:究竟是将字符串转换为数字(进行相加)呢,还是将数字转换为字符串(进行联接)呢?在Python中,我们认为“明确比含糊好”(即,EIBTI(Explicit is better than implicit)),因此你得手动转换类型:

X = int(S) + I # 做加法: 43
X = S + str(I) # 字符串联接: "421"

循环的数据结构会导致循环
尽管这在实际情况中很少见,但是如果一个对象的集合包含了到它自己的引用,这被称为循环对象(cyclic object)。如果在一个对象中发现一个循环,Python会输出一个[…],以避免在无限循环中卡住:

>>> L = ['grail'] # 在 L中又引用L自身会
>>> L.append(L) # 在对象中创造一个循环
>>> L
['grail', [...]]

除了知道这三个点在对象中表示循环以外,这个例子也是很值得借鉴的。因为你可能无意间在你的代码中出现这样的循环的结构而导致你的代码出错。如果有必要的话,维护一个列表或者字典来表示已经访问过的对象,然后通过检查它来确认你是否碰到了循环。
赋值语句不会创建对象的副本,仅仅创建引用
这是Python的一个核心理念,有时候当行为不对时会带来错误。在下面的例子中,一个列表对象被赋给了名为L的变量,然后L又在列表M中被引用。内部改变L的话,同时也会改变M所引用的对象,因为它们俩都指向同一个对象。

>>> L = [1, 2, 3] # 共用的列表对象
>>> M = ['X', L, 'Y'] # 嵌入一个到L的引用
>>> M
['X', [1, 2, 3], 'Y']

>>> L[1] = 0 # 也改变了M
>>> M
['X', [1, 0, 3], 'Y']

通常情况下只有在稍大一点的程序里这就显得很重要了,而且这些共用的引用通常确实是你需要的。如果不是的话,你可以明确的给他们创建一个副本来避免共用的引用;对于列表来说,你可以通过使用一个空列表的切片来创建一个顶层的副本:

>>> L = [1, 2, 3]
>>> M = ['X', L[:], 'Y'] # 嵌入一个L的副本

>>> L[1] = 0 # 仅仅改变了L,但是不影响M
>>> L
[1, 0, 3]
>>> M
['X', [1, 2, 3], 'Y']

切片的范围起始从默认的0到被切片的序列的最大长度。如果两者都省略掉了,那么切片会抽取该序列中的所有元素,并创造一个顶层的副本(一个新的,不被公用的对象)。对于字典来说,使用字典的dict.()方法。
静态识别本地域的变量名
Python默认将一个函数中赋值的变量名视作是本地域的,它们存在于该函数的作用域中并且仅仅在函数运行的时候才存在。从技术上讲,Python是在编译def代码时,去静态的识别本地变量,而不是在运行时碰到赋值的时候才识别到的。如果不理解这点的话,会引起人们的误解。比如,看看下面的例子,当你在一个引用之后给一个变量赋值会怎么样:

>>> X = 99
>>> def func():
... print X # 这个时候还不存在
... X = 88 # 在整个def中将X视作本地变量
...
>>> func( ) # 出错了!

你会得到一个“未定义变量名”的错误,但是其原因是很微妙的。当编译这则代码时,Python碰到给X赋值的语句时认为在这个函数中的任何地方X会被视作一个本地变量名。但是之后当真正运行这个函数时,执行print语句的时候,赋值语句还没有发生,这样Python便会报告一个“未定义变量名”的错误。
事实上,之前的这个例子想要做的事情是很模糊的:你是想要先输出那个全局的X,然后创建一个本地的X呢,还是说这是个程序的错误?如果你真的是想要输出这个全局的X,你需要将它在一个全局语句中声明它,或者通过包络模块的名字来引用它。
默认参数和可变对象
在执行def语句时,默认参数的值只被解析并保存一次,而不是每次在调用函数的时候。这通常是你想要的那样,但是因为默认值需要在每次调用时都保持同样对象,你在试图改变可变的默认值(mutable defaults)的时候可要小心了。例如,下面的函数中使用一个空的列表作为默认值,然后在之后每一次函数调用的时候改变它的值:

>>> def saver(x=[]): # 保存一个列表对象
... x.append(1) # 并每次调用的时候
... print x # 改变它的值
...
>>> saver([2]) # 未使用默认值
[2, 1]
>>> saver() # 使用默认值
[1]
>>> saver() # 每次调用都会增加!
[1, 1]
>>> saver()
[1, 1, 1]

有的人将这个视作Python的一个特点——因为可变的默认参数在每次函数调用时保持了它们的状态,它们能提供像C语言中静态本地函数变量的类似的一些功能。但是,当你第一次碰到它时会觉得这很奇怪,并且在Python中有更加简单的办法来在不同的调用之间保存状态(比如说类)。
要摆脱这样的行为,在函数开始的地方用切片或者方法来创建默认参数的副本,或者将默认值的表达式移到函数里面;只要每次函数调用时这些值在函数里,就会每次都得到一个新的对象:

>>> def saver(x=None):

... if x is None: x = [] # 没有传入参数?
... x.append(1) # 改变新的列表
... print x
...
>>> saver([2]) # 没有使用默认值
[2, 1]
>>> saver() # 这次不会变了
[1]
>>> saver()
[1]

其他常见的编程陷阱
下面列举了其他的一些在这里没法详述的陷阱:
在顶层文件中语句的顺序是有讲究的:因为运行或者加载一个文件会从上到下运行它的语句,所以请确保将你未嵌套的函数调用或者类的调用放在函数或者类的定义之后。
reload不影响用from加载的名字:reload最好和import语句一起使用。如果你使用from语句,记得在reload之后重新运行一遍from,否则你仍然使用之前老的名字。
在多重继承中混合的顺序是有讲究的:这是因为对superclass的搜索是从左到右的,在类定义的头部,在多重superclass中如果出现重复的名字,则以最左边的类名为准。
在try语句中空的except子句可能会比你预想的捕捉到更多的错误。在try语句中空的except子句表示捕捉所有的错误,即便是真正的程序错误,和sys.exit()调用,也会被捕捉到。

⑵ python有多少类

导读:本篇文章首席CTO笔记来给大家介绍有关python有多少类的相关内容,希望对大家有所帮助,一起来看看吧。

python中的数据类型

1、数字:Python数字类型用于存储数值,支持三种不同的数值类型,包含整型、浮点型、复数。

2、字符串:Python中最常用的数据类型,由数字、字母、下划线等特殊符号组成的一串字符串。

3、列表:用一对"[]"将单个或多个元素括起来,每个元素之间用逗号分隔开。

4、元组:元组用一对"()"将单个或多个元素括起来,每个元素之间用逗号分隔开来,另外元组创建完毕后,元素不可修改,这点与列表大不相同。

5、字典:字典的每个键值对(key=value)用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号{}中,字典是无序的,也就是说一个值value,必须通过它的键key去取。

6、集合:是一个无序的不重复元素系列,用大括号{}括起来,与字典不同,集合在于无序不重复。

python语言中有哪些数据类型

python数据类型有很多,这里为大家简单例举几个:

第一种:整数

python可以处理任意大小的整数,当然包含负整数,在python程序中,整数的表示方法和数学上的写法一模一样,比如:1,100,-8080,0,等。

计算机由于使用二进制,所以有时候用十六进制表示整数比较方便,十六进制用0x前缀和0-9,a-f表示,比如:0xff00。

第二种:浮点数

浮点数也就是小数,之所以称为浮点数,是因为按照科学计数法表示时,一个浮点数的小数点位置是可变的。浮点数可以用数学写法,比如1.23,3.15,-9.01等。但是对于很大或者很小的浮点数,就必须用科学计数法表示,把10用e替代,1.23x10^9就是1.23e9。

整数和浮点数在计算机内部存储的方法是不同的,整数运算永远是精确的,而浮点数运算则可能会有四舍五入的误差。

第三种:字符串

字符串是以“或”括起来的任意文本,比如'abc','xyz'等。请注意,“或”本身只是一种表示方式,不是字符串的一部分,因此,字符串'abc'只有a,b,c这3个字符。

第四个:布尔值

布尔值和布尔代数的表示完全一致,一个布尔值只有True、False两种值,要么是True,要么是False,在python中,可以直接用True、False表示布尔值,也可以通过布尔运算计算出来。

布尔值可以用and、or或not运算。

and运算是与运算,只有所有都为True,and运算结果才是True。

or运算是或运算,只要其中有一个为True,or运算结果就是True。

not运算是非运算,它是一个单目运算符,把True变成False,False变成True。

第五个:空值

空值是python里一个特殊的值,用None表示。None不能理解为0,因为0是有意义的,而None是一个特殊的空值。

此外,python还提供了列表、字典等多种数据类型,还允许创建自定义数据类型。

Python模块的几种类型简介

1、系统内置模块

os模块:os模块包含普遍的操作系统功能

sys模块:提供了一系列有关Python运行环境的变量和函数

random模块:random模块用于生成随机数

time模块:主要包含各种提供日期、时间功能的类和函数

datetime模块:对time模块的一个高级封装

shutil模块:是一种高层次的文件操作工具

logging模块:将日志打印到了标准输出中

re模块:可以直接调用来实现正则匹配

pymysql模块:连接数据库,并实现简单的增删改查

threading模块:提供了更强大的多线程管理方案

queue模块:实现了多生产者,多消费者的队列

json模块:用于字符串和数据类型间进行转换json

2、开源(三方)模块

Requests:最富盛名的http库。每个Python程序员都应该有它。

Scrapy:从事爬虫相关的工作,这个库也是必不可少的。

NumPy:为Python提供了很多高级的数学方法。

matplotlib:一个绘制数据图的库。对于数据分析师非常有用。

Pygame:开发2D游戏的时候可以用上。

Scapy:用Python写的数据包探测和分析库。

Django:开源Web开发框架,它鼓励快速开发,并遵循MVC设计,开发周期短。

Py2exe:将python脚本转换为windows上可以独立运行的可执行程序。

BeautifulSoup:基于Python的HTML/XML解析器,简单易用。

PyGtk:基于Python的GUI程序开发GTK+库。

3、自定义模块

自定义模块是自己写的模块,对某段逻辑或某些函数进行封装后供其他函数调用。

注意:自定义模块的命名一定不能和系统内置的模块重名了,否则将不能再导入系统的内置模块了。

例如:自定义了一个sys.py模块后,再想使用系统的sys模块是不能使用的。

python基本数据类型有哪些

数字—int类:关于数字,Python的数字类型有int整型、long长整型、float浮点数、complex复数以及布尔值,这里主要介绍的就是int整型。在Python2当中,整数的大小是有限制的,即当数字超过一定范围不再是int类型,而是long长整型;在Python3中,无论整数的大小长度为多少,统称为整型int。

布尔值—bool类:布尔值,有两种结果true和false,其分别对应与二进制中的0和1。

字符串—str类:字符串是Python中最常用的数据类型,其用途有很多,我们可以使用单引号或者双引号来创建字符串;字符串是不可修改的,所以关于字符串我们可以从索引、切片、长度、遍历、删除、分割、清楚空白、大小写切换、判断以什么开头等方面对字符串进行介绍。

列表—list类:由一系列特定元素顺序排列的元素组成,它的元素可以是任何数字类型即数字、字符串、列表、元组、字典、布尔值等,同时其元素也是可以修改的。

元组—tuple类:元组即为不可修改的列表,其于特性跟list相似,使用圆括号而不是方括号来标识。

字典—dict类:字典为一系列的键-值对,每个键值对用逗号隔开,每个键都与一个值相对应,可以通过使用键来访问对应的值,无序的。键的定义必须是不可变的,既可以是数字、字符串,也可以是元组,还有布尔值。

集合—set类:它犹如一个篮子,你可以在里面存东西,但是这些东西又是无序的,很难指定单独去取某一样东西;它又可以通过一定的方法筛选去获得你需要的那部分东西,故集合可以创建、增、删、关系运算。

python选择结构分为哪几类?每一类的语法格式怎么书写?

分三类:单分支,双分支,多分支。

输出

用print()在括号中加上字符串,就可以向屏幕上输出指定的文字。比如输出'hello,world',用代码实现如下:

print('hello,world')

print()函数也可以接受多个字符串,用逗号“,”隔开,就可以连成一串输出:

print('Thequickbrownfox','jumpsover','thelazydog')

print()会依次打印每个字符串,遇到逗号“,”会输出一个空格

print()也可以打印整数,或者计算结果:

print(300)

300

print(100+200)

300

因此,我们可以把计算100+200的结果打印得更漂亮一点:

print(颼+200=',100+200)

100+200=300

输入

Python提供了一个input(),可以让用户输入字符串,并存放到一个变量里。比如输入用户的名字:

name=input()

Michael

当你输入name=input()并按下回车后,Python交互式命令行就在等待你的输入了。这时,你可以输入任意字符,然后按回车后完成输入。

输入完成后,不会有任何提示,Python交互式命令行又回到状态了。那我们刚才输入的内容到哪去了?答案是存放到name变量里了。可以直接输入name查看变量内容:

name

'Michael'

结合输入输出

name=input()

print('hello,',name)

数据类型

整数

Python可以处理任意大小的整数,当然包括负整数,在程序中的表示方法和数学上的写法一模一样,例如:1,100,-8080,0,等等。

计算机由于使用二进制,所以,有时候用十六进制表示整数比较方便,十六进制用0x前缀和0-9,a-f表示,例如:0xff00,0xa5b4c3d2,等等。

浮点数

浮点数也就是小数,之所以称为浮点数,是因为按照科学记数法表示时,一个浮点数的小数点位置是可变的,比如,1.23x109和12.3x108是完全相等的。浮点数可以用数学写法,如1.23,3.14,-9.01,等等。但是对于很大或很小的浮点数,就必须用科学计数法表示,把10用e替代,1.23x109就是1.23e9,或者12.3e8,0.000012可以写成1.2e-5,等等。

整数和浮点数在计算机内部存储的方式是不同的,整数运算永远是精确的(除法难道也是精确的?是的!),而浮点数运算则可能会有四舍五入的误差。

字符串

字符串是以单引号'或双引号"括起来的任意文本,比如'abc',"xyz"等等。请注意,''或""本身只是一种表示方式,不是字符串的一部分,因此,字符串'abc'只有a,b,c这3个字符。如果'本身也是一个字符,那就可以用""括起来,比如"I'mOK"包含的字符是I,',m,空格,O,K这6个字符。

如果字符串内部既包含'又包含"怎么办?可以用转义字符来标识,比如:

'I'm"OK""!'

表示的字符串内容是:

I'm""OK""!

转义字符可以转义很多字符,比如 表示换行, 表示制表符,字符本身也要转义,所以\表示的字符就是,可以在Python的交互式命令行用print()打印字符串看看:

print('I'mok.')

I'mok.

print('I'mlearning Python.')

I'mlearning

Python.

print('\ \')

如果字符串里面有很多字符都需要转义,就需要加很多,为了简化,Python还允许用r''表示''内部的字符串默认不转义,可以自己试试:

print('\ \')

\

print(r'\ \')

\ \

如果字符串内部有很多换行,用 写在一行里不好阅读,为了简化,Python允许用'''...'''的格式表示多行内容,可以自己试试:

print('''line1

...line2

...line3''')

line1

line2

line3

上面是在交互式命令行内输入,注意在输入多行内容时,提示符由变为...,提示你可以接着上一行输入,注意...是提示符,不是代码的一部分:

┌────────────────────────────────────────────────────────┐

│CommandPrompt-python_□x│

├────────────────────────────────────────────────────────┤

│print('''line1│

│...line2│

│...line3''')│

│line1│

│line2│

│line3│

││

│_│

││

││

││

└────────────────────────────────────────────────────────┘

当输入完结束符```和括号)后,执行该语句并打印结果。

如果写成程序并存为.py文件,就是:

print('''line1

line2

line3''')

多行字符串'''...'''还可以在前面加上r使用

布尔值

布尔值和布尔代数的表示完全一致,一个布尔值只有True、False两种值,要么是True,要么是False,在Python中,可以直接用True、False表示布尔值(请注意大小写),也可以通过布尔运算计算出来:

True

True

not运算是非运算,它是一个单目运算符,把True变成False,False变成True:

notTrue

False

空值

空值是Python里一个特殊的值,用None表示。None不能理解为0,因为0是有意义的,而None是一个特殊的空值。

此外,Python还提供了列表、字典等多种数据类型,还允许创建自定义数据类型,我们后面会继续讲到。

变量

变量的概念基本上和初中代数的方程变量是一致的,只是在计算机程序中,变量不仅可以是数字,还可以是任意数据类型。

变量在程序中就是用一个变量名表示了,变量名必须是大小写英文、数字和_的组合,且不能用数字开头,比如:

a=1

变量a是一个整数。

t_007='T007'

变量t_007是一个字符串。

Answer=True

变量Answer是一个布尔值True。

在Python中,等号=是赋值语句,可以把任意数据类型赋值给变量,同一个变量可以反复赋值,而且可以是不同类型的变量

这种变量本身类型不固定的语言称之为动态语言,与之对应的是静态语言。静态语言在定义变量时必须指定变量类型,如果赋值的时候类型不匹配,就会报错。

最后,理解变量在计算机内存中的表示也非常重要。当我们写:

a='ABC'

时,Python解释器干了两件事情:

在内存中创建了一个'ABC'的字符串;

在内存中创建了一个名为a的变量,并把它指向'ABC'。

也可以把一个变量a赋值给另一个变量b,这个操作实际上是把变量b指向变量a所指向的数据

常量

所谓常量就是不能变的变量,比如常用的数学常数π就是一个常量。在Python中,通常用全部大写的变量名表示常量:

PI=3.14159265359

但事实上PI仍然是一个变量,Python根本没有任何机制保证PI不会被改变,所以,用全部大写的变量名表示常量只是一个习惯上的用法,如果你一定要改变变量PI的值,也没人能拦住你。

最后解释一下整数的除法为什么也是精确的。在Python中,有两种除法,一种除法是/:

10/3

3.3333333333333335

/除法计算结果是浮点数,即使是两个整数恰好整除,结果也是浮点数:

9/3

3.0

还有一种除法是//,称为地板除,两个整数的除法仍然是整数:

10//3

3

你没有看错,整数的地板除//永远是整数,即使除不尽。要做精确的除法,使用/就可以。

因为//除法只取结果的整数部分,所以Python还提供一个余数运算,可以得到两个整数相除的余数:

10%3

1

无论整数做//除法还是取余数,结果永远是整数,所以,整数运算结果永远是精确的。

python的数据类型有哪些?

1.数字类型

Python数字类型主要包括int(整型)、long(长整型)和float(浮点型),但是在Python3中就不再有long类型了。

int(整型)

在32位机器上,整数的位数是32位,取值范围是-231~231-1,即-2147483648~214748364;在64位系统上,整数的位数为64位,取值范围为-263~263-1,即9223372036854775808~9223372036854775807。

long(长整型)

Python长整型没有指定位宽,但是由于机器内存有限,使用长的长整数数值也不可能无限大。

float(浮点型)

浮点型也就是带有小数点的数,其精度和机器有关。

complex(复数)

Python还支持复数,复数由实数部分和虚数部分构成,可以用a+bj

阅读全文

与最大m子段乘积Python相关的资料

热点内容
精品php源码 浏览:960
自己编写云服务器抢红包 浏览:203
java解压缩文件加密 浏览:887
dlink打印服务器默认地址 浏览:353
php休眠函数 浏览:372
金蝶如何打开服务器 浏览:766
e4a手游辅助源码 浏览:777
什么app可以实时直播 浏览:106
苹果13的app闪退什么原因 浏览:775
尾盘选股源码公式 浏览:450
php日期运算 浏览:931
天龙八部长歌服务器什么时候开的 浏览:199
鬼泣4模型在那个文件夹 浏览:229
单片机的串行口 浏览:58
phpjson转化为数组 浏览:268
pdf导入excel 浏览:428
苹果xsmax信任app在哪里设置 浏览:53
自动外链php源码 浏览:245
我的世界新手奖励箱命令 浏览:146
linux更新vim 浏览:998